1. Harrington, J. A. and Y. Matsuura, "Review of hollow waveguide technology," Proc. SPIE,, Vol. 2396, 4-14, 1995.
doi:10.1117/12.208395 Google Scholar
2. Harrington, J. A., D. M. Harris, and A. Katzir, Biomedical Optoelectronic Instrumentation, 4-14, 1995.
doi:10.1117/12.208395
3. Harrington, J. A., "A review of IR transmitting, hollow waveguides," Fiber and Integrated Optics, Vol. 19, 211-228, 2000.
doi:10.1080/01468030050058794 Google Scholar
4. Marhic, M. E., "Mode-coupling analysis of bending losses in IR metallic waveguides," Appl. Opt., Vol. 20, 3436-3441, 1981.
doi:10.1364/AO.20.003436 Google Scholar
5. Croitoru, N., E. Goldenberg, D. Mendlovic, S. Ruschin, and N. Shamir, "Infrared chalcogenide tube waveguides," Proc. SPIE, Vol. 618, 140-145, 1986.
doi:10.1117/12.961107 Google Scholar
6. Novotny, L. and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallc, dielectric function," Physical Review E, Vol. 50, 4094-4106, 1994.
doi:10.1103/PhysRevE.50.4094 Google Scholar
7. Yener, N., "Advancement of algebraic function approximation in eigenvalue problems of lossless metallic waveguides to infinite dimensions, Part I: Properties of the operator in infinite dimensions," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1611-1628, 2006.
doi:10.1163/156939306779292363 Google Scholar
8. Yener, N., "Algebraic function approximation in eigenvalue problems of lossless metallic waveguides: Examples," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 731-745, 2006.
doi:10.1163/156939306776143442 Google Scholar
9. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using Taylor's series expansion," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1093-1100, 2006.
doi:10.1163/156939306776930286 Google Scholar
10. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using the Fourier series expansion," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1299-1310, 2006.
doi:10.1163/156939306779276758 Google Scholar
11. Reutskiy, S. Y., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008.
doi:10.2528/PIER08022701 Google Scholar
12. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley and Sons, 1999.
13. Hildebrand, F. B., Advanced Calculus for Applications, 2nd Ed., Prentice Hall Inc., 1976.
14. Collin, R. E., Foundation for Microwave Engineering, McGraw-Hill, New York, 1996.
15. Yariv, A., Optical Electronics, 3rd Ed., Holt-Saunders Int. Editions, 1985.
16. Baden Fuller, A. J., Microwaves, Chap. 5, 118{120, Pergamon Press, A. Wheaton and Co. Ltd, Oxford, 1969.
17. Olver, F. W. J., "Royal Society Mathematical Tables, Zeros and Associated Values," University Press Cambridge, 2-30, 1960. Google Scholar
18. Jahnke, E. and F. Emde, "Tables of Functions with Formulae and Curves," Chap. 8, 166, Dover Publications, New York, 1945. Google Scholar
19. The Numerical Algorithms Group (NAG) Ltd., Wilkinson House, , Oxford, UK. Google Scholar
20. Menachem, Z., E. Jerby, and , "Transfer matrix function (TMF) for wave propagation in dielectric waveguides with arbitrary transverse profiles," IEEE Trans. Microwave Theory Tech., Vol. 46, 975-982, 1998.
doi:10.1109/22.701451 Google Scholar
21. Vladimirov, V., Equations of Mathematical Physics, 1971.
22. Miyagi, M., K. Harada, and S. Kawakami, "Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature," IEEE Trans. Microwave Theory Tech., Vol. 32, 513-521, 1984.
doi:10.1109/TMTT.1984.1132715 Google Scholar
23. Croitoru, N., A. Inberg, M. Oksman, and M. Ben-David, "Hollow silica, metal and plastic waveguides for hard tissue medical applications," Proc. SPIE, Vol. 2977, 30-35, 1997.
doi:10.1117/12.271023 Google Scholar