Vol. 38
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-02-26
WDM Performances of Two- and Three-Waveguide Mach-Zehnder Switches Assembled into 4x4 Matrix Router
By
Progress In Electromagnetics Research Letters, Vol. 38, 1-16, 2013
Abstract
The performance comparison of two configurations of broadband Mach-Zehnder Switches exploiting, respectively, two and three waveguides, assembled into 4x4 matrices is reported in this paper. The simulations are performed by the Finite Element Method and the Finite Difference Beam Propagation Method. In particular, we have found that, to parity of maximum insertion loss, about equal to 1 dB for the single switch and 3 dB for the 4x4 matrix, the proposed three-waveguide configuration exhibits an almost doubled bandwidth Δλ=115 nm, making it suitable for efficient routing of the Wavelength Division Multiplexing signals over photonic Networks on Chip.
Citation
Giovanna Calo, and Vincenzo Petruzzelli, "WDM Performances of Two- and Three-Waveguide Mach-Zehnder Switches Assembled into 4x4 Matrix Router," Progress In Electromagnetics Research Letters, Vol. 38, 1-16, 2013.
doi:10.2528/PIERL12113007
References

1. Biberman, A. and K. Bergman, "Optical interconnection networks for high-performance computing systems," Rep. Prog. Phys, Vol. 75, 046402, 2012.
doi:10.1088/0034-4885/75/4/046402

2. Kumar, A., B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, "Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal," Progress In Electromagnetics Research Letters, Vol. 33, 27-35, 2012.

3. Wu, C.-J., M.-H. Lee, W.-H. Chen, and T.-J. Yang, "A mid-infrared multichanneled filter in a photonic ceystal heterostructure containing negative-permittivity materials," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1360-1371, 2011.

4. Calµo, G., A. Farinola, and V. Petruzzelli, "Equalization in photonic bandgap multiwavelength filters by the Newton binomial distribution," Journal of the Optical Society of America B, Vol. 28, 1668-1679, 2011.
doi:10.1364/JOSAB.28.001668

5. Green, W. M. J., M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Express, Vol. 15, 17106-17113, 2007.
doi:10.1364/OE.15.017106

6. Xu, Q., S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Express, Vol. 15, 430-436, 2007.
doi:10.1364/OE.15.000430

7. Liao, L., D. Samara-Rubio, M. Morse, A. Liu, and D. Hodge, "High speed silicon Mach-Zehnder modulator," Opt. Express, Vol. 13, 3130-3135, 2005.

8. Liu, A., L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express, Vol. 15, 660-668, 2007.
doi:10.1364/OE.15.000660

9. Thomson, , D. J., F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, "High contrast 40 Gbit/s optical modulation in silicon," Opt. Express, Vol. 19, 11507-11516, 2011.
doi:10.1364/OE.19.011507

10. Calo, G., V. Petruzzelli, L. Mescia, and F. Prudenzano, "Study of gain in photonic band gap active InP waveguides," Journal of the Optical Society of America B, Vol. 26, 2414-2422, 2009.
doi:10.1364/JOSAB.26.002414

11. Calµo, G., A. D'Orazio, M. Grande, V. Marrocco, and V. Petruzzelli, "Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching," IEEE Journal of Quantum Electronics, Vol. 47, No. 2, 172-181, 2011.
doi:10.1109/JQE.2010.2053838

12. Calµo, G., D. Alexandropoulos, and V. Petruzzelli, "Active photonic band-gap switch based on GaInNAs multiquantum well," IEEE Photonics Journal, Vol. 4, No. 5, 1936-1946, 2012.
doi:10.1109/JPHOT.2012.2220128

13. Calo, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012.

14. Calo, G., D. Alexandropoulos, A. D'Orazio, and V. Petruzzelli, "Wavelength selective switching in dilute nitrides multi quantum well photonic band gap waveguides," Physica Status Solidi B, Vol. 248, 1212-1215, 2011.
doi:10.1002/pssb.201000782

15. Ghafoori-Fard, H., M. J. Moghimi, and A. Rostami, "Linear and nonlinear superimposed Bragg grating: A novel proposal for all-optical multi-wavelength filtering and switching," Progress In Electromagnetics Research, Vol. 77, 243-266, 2007.
doi:10.2528/PIER07072903

16. D'Alessandro, A., F. Campoli, P. Maltese, G. Chessa, A. D'Orazio, and V. Petruzzelli, "Design of an ultrashort directional coupler with an SSFLC coupling layer," Molecular Crystals and Liquid Crystals, Vol. 320, 355-364, 1998.

17. Moghimi, M. J., H. Ghafoori-Fard, and A. Rostami, "Analysis and design of all-optical switching in apodized and chirped Bragg gratings," Progress In Electromagnetics Research B, Vol. 8, 87-102, 2008.
doi:10.2528/PIERB08041303

18. Moghimi, M. J., H. G. Fard, and A. Rostami, "Multi-wavelengths optical switching and tunable filters using dynamic superimposed photorefractive Bragg grating," Progress In Electromagnetics Research C, Vol. 3, 129-142, 2008.
doi:10.2528/PIERC08041302

19. Calµo, G., A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, "Tunability of photonic band gap notch filters," IEEE Transactions on Nanotechnology, Vol. 7, 273-284, 2008.
doi:10.1109/TNANO.2008.917848

20. D'Orazio, A., M. De Sario, V. Ingravallo, V. Petruzzelli, and F. Prudenzano, "Infiltrated liquid crystal photonic bandgap devices for switching and tunable filtering," Fiber and Integrated Optics, Vol. 22, No. 3, 161-172, 2003.
doi:10.1080/01468030390111968

21. Calµo, G., A. D'Orazio, and V. Petruzzelli, "Broadband Mach-Zehnder switch for photonic networks on chip," Journal of Lightwave Technology, Vol. 30, No. 7, 944-952, 2012.
doi:10.1109/JLT.2012.2184739

22. Parini, A., L. Ramini, G. Bellanca, and D. Bertozzi, "Abstract modeling of switching elements for optical networks-on-chip with technology platform awareness," INA-OCMC: 5th International Workshop on Interconnection Network Architecture: On-Chip, Multi-Chip, 2011.

23. Passaro, V. M. N. and F. Dell'Olio, "Scaling and optimization of MOS optical modulators in nanometer SOI waveguides," IEEE Transactions on Nanotechnology, Vol. 7, 401-408, 2008.
doi:10.1109/TNANO.2008.920207

24. Calµo, G. and V. Petruzzelli, "Photonic interconnects for chip multiprocessing architectures," 2012 14th International Conference on Transparent Optical Networks (ICTON), 1-4, July 2-5, 2012.

25. Huang, W., C. Xu, S. Chu, and S. K. Chaudhuri, "The finite-difference vector beam propagation method: Analysis and assessment," J. Lightw. Technol., Vol. 10, 295-305, 1992.
doi:10.1109/50.124490

26. Soref, R. and B. R. Bennett, "Electrooptical effects in silicon IEEE Journal of Quantum Electronics,", Vol. 23, 123-129, 1987.

27. Yang, M., W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, "Non-blocking 4 x 4 electro-optic silicon switch for on-chip photonic networks," Opt. Express, Vol. 19, 47-54, 2011.
doi:10.1364/OE.19.000047

28. Thompson, R. A. and D. K. Hunter, "Elementary photonic switching modules in three divisions," IEEE Journal of Selected Areas in Communications, Vol. 14, No. 2, 362-372, 1996.
doi:10.1109/49.481944