Vol. 28
Latest Volume
All Volumes
Wideband Planar Split Ring Resonator Based Metamaterials
Progress In Electromagnetics Research M, Vol. 28, 115-128, 2013
In this paper, a method for increasing bandwidth of metamaterial structures is presented. The metamaterial structures used in this study are based on Split Ring Resonators (SRRs), the most recognized structures for realization of metamaterials with negative magnetic permeability coefficients. To increase the frequency bandwidth of such metamaterials, two different methods, 1) rotating the inner ring of SRR with different angles in a hybrid structure, which is herein called unit cell, 2) changing dimensions of SRR, are presented. Moreover, the effect of SRR arrangement in unit cell on bandwidth is investigated. The idea of bandwidth enhancement is verified via simulations, which are performed via full-wave method and measurements, which are done using a built strip-line setup.
Abdolshakoor Tamandani, Javad Ahmadi-Shokouh, and Saeed Tavakoli, "Wideband Planar Split Ring Resonator Based Metamaterials," Progress In Electromagnetics Research M, Vol. 28, 115-128, 2013.

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of epsilon and mu," Sov. Phys. Uspekhi, Vol. 10, 509-514, 1968.

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, Nov. 1999.

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 6, 77-79, Apr. 2001.

4. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic microstructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.

5. Chen, H., L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegoczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E, Vol. 70, No. 5, 057605.1-057605.4, 2004.

6. Wu, B. I., W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of ­-like metallic patterns," App. Phys. Lett.,, Vol. 84, No. 9, 1537-1539, Mar. 2004.

7. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Vol. 69, No. 1, 014402.1-014402.5, 2004.

8. Ahmed, A. and M. A. Alsunaidi, "Design of wide-band metamaterials based on the split ring resonator," NATO ARW & META, 523-528, 2008.

9. Sabah, C. and H. G. Roskos, "Broadband terahertz metamaterial for negative refraction," PIERS Proceedings, 785-788, Moscow, Russia, Aug. 18-21, 2009.

10. De La Mata Luque, T. M., N. R. Devarapalli, and C. G. Christodoulou, "Investigation of bandwidth enhancement in volumetric left-handed metamaterials using fractal," Progress In Electromagnetics Research, Vol. 131, 185-194, 2012.

11. Chowdhury, D. R., R. Singh, M. Reiten, H. Chen, A. J. Taylor, J. F. O'Hara, and A. K. Azad, "A broadband planar terahertz metamaterial with nested structure," Opt. Exp., Vol. 19, No. 17, 15817-15823, Aug. 2011.

12. Huang, L., D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, "Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band," Opt. Lett., Vol. 37, No. 2, 154-156, 2012.

13. Rudolph, S. M. and A. Grbic, "Super-resolution focusing using volumetric, broadband NRI media," IEEE Trans. on Ant. and Pro., Vol. 56, No. 9, 2963-2969, Sep. 2008.

14. Lepetit, T., E. Akmansoy, M. Pate, and J. P. Ganne, "Broadban negative magnetism from all-dielectric metamaterial," Electron. Lett., Vol. 44, No. 19, Sep. 2008.

15. Cui, T. J., D. R. Smith, and R. Liu, "Metamaterials Theory, Design and Applications," Springer, 2009.

16. Wang, J., S. Qu, Z. Xu, H. Ma, Y. Yang, and C. Gu, "A controllable magnetic metamaterial: Split-ring resonator with rotated inner ring," IEEE Trans. on Ant. and Pro., Vol. 56, No. 7, 2018-2022, Jul. 2008.

17. Cameron, R. J., R. Mansour, and C. M. Kudsia, "Microwave Filters for Communication Systems: Fundamentals, Design and Applications," John Willey and Sons, 2007.

18. Chen, X., T. M. Grzegorczyk, B. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, No. 1, 016608.1-016608.7, Jul. 2004.

19. Yousefi, L., M. S. Boybay, and O. M. Ramahi, "Characterization of metamaterials using a strip line fixture," IEEE Trans. on Ant. and Pro., Vol. 59, No. 4, 1245-1253, Apr. 2011.