1. Dostert, K., Powerline Communications, 251-263, Prentice Hall PTR, Inc., 2001.
2. Mori, A., Y. Watanabe, M. Tokuda, and K. Kawamoto, "The power line transmission characteristics for an OFDM signal," Progress In Electromagnetics Research, Vol. 61, 279-290, 2006.
doi:10.2528/PIER06042207 Google Scholar
3. Amirshahi, P. and M. Kavehrad, "High-frequency characteristics of overhead multiconductor power lines for broadband communications," IEEE J. Selected Areas in Communications, Vol. 24, 1292-1303, 2006.
doi:10.1109/JSAC.2006.874399 Google Scholar
4. Esmailian, T., F. R. Kschischang, and P. G. Gulak, "Inbuilding power lines as high-speed communication channels: Channel characterization and a test channel ensemble," Int. J. Communication Systems, Vol. 16, 381-400, 2003.
doi:10.1002/dac.596 Google Scholar
5. Papaleonidopoulos, , I. C., C. N. Capsalis, C. G. Karagiannopoulos, and N. J. Theodorou, "Statistical analysis and simulation of indoor single-phase low voltage power-line communication channels on the basis of multipath propagation," IEEE Trans. Consumer Electronics, Vol. 49, 89-99, 2003.
doi:10.1109/TCE.2003.1205460 Google Scholar
6. Zimmermann, M. and K. Dostert, "A multipath model for the powerline channel," IEEE Trans. Communications, Vol. 50, 553-539, 2002.
doi:10.1109/26.996069 Google Scholar
7. Canete, F. J., L. Diez, J. A. Corties, and J. T. Entrambasaguas, "Broadband modelling of indoor power-line channels," IEEE Trans. Consumer Electronics, Vol. 48, 175, 2002.
doi:10.1109/TCE.2002.1010108 Google Scholar
8. Liu, , D., E. Flint, B. Gaucher, and Y. Kwark, "Wide band AC power line characterization," IEEE Trans. Consumer Electronics, Vol. 45, 1087-1097, 1999.
doi:10.1109/30.809186 Google Scholar
9. Tanaka, , M., "Transmission characteristics of a power line used for data communications at high frequencies," IEEE Trans. Consumer Electronics, Vol. 35, 37-42, 1989.
doi:10.1109/30.24652 Google Scholar
10. Andreou, , G. T. and D. P. Labridis, "Experimental evaluation of a low-voltage power distribution cable model basedon a finite-element approach," IEEE Trans. Power Delivery, Vol. 22, 1445-1460, 2007. Google Scholar
11. Andreou, G. T. and D. P. Labridis, "Electrical parameters of low-voltage power distribution cables used for power-line communications," IEEE Trans. Power Delivery, Vol. 22, 879-886, 2007.
doi:10.1109/TPWRD.2006.881577 Google Scholar
12. Papaleonidopoulos, , I. C., C. G. Karagiannopoulos, and N. J. Theodorou, "Evaluation of the two-conductor HF transmission-line model for symmetrical indoor triple-pole cables," Measurement, Vol. 39, 719-728, 2006.
doi:10.1016/j.measurement.2006.03.007 Google Scholar
13. Faria and J. B., "Evaluation of indoor cable capacitances taking into account conductor proximity and dielectric heterogeneity effects," IEEE Trans. Power Delivery, Vol. 21, 1919-1926, 2006.
doi:10.1109/TPWRD.2006.877096 Google Scholar
14. Faria, , J. B. and M. G. das Neves, "Accurate evaluation of indoor triplex cable capacitances taking conductor proximity effects into account," IEEE Trans. Power Delivery, Vol. 21, 1238-1244, 2006.
doi:10.1109/TPWRD.2005.860233 Google Scholar
15. Papaleonidopoulos, I. C., C. G. Karagiannopoulos, N. J. Theodorou, and C. N. Capsalis, "Theoretical transmission-line study of symmetrical indoor triple-pole cables for single-phase HF signalling," IEEE Trans. Power Delivery, Vol. 20, 646-654, 2005.
doi:10.1109/TPWRD.2005.844329 Google Scholar
16. Meng, H., S. Chen, Y. L. Guan, C. L. Law, P. L. So, E. Gunawan, and T. T. Lie, "Modeling of transfer characteristics for the broadband power line communication channel," IEEE Trans. Power Delivery, Vol. 19, 1057-1064, 2004.
doi:10.1109/TPWRD.2004.824430 Google Scholar
17. Lazaropoulos, A. G., "Towards broadband over power lines systems integration: Transmission characteristics of underground low-voltage distribution power lines," Progress In Electromagnetics Research B, Vol. 39, 89-114, 2012.
doi:10.2528/PIERB12012409 Google Scholar
18. Levin, , B. M., "Calculation of electrical parameters of two-wire lines in multiconductor cables," IEEE Trans. Electromagnetic Compatibility, Vol. 50, 697-703, 2008.
doi:10.1109/TEMC.2008.927924 Google Scholar
19. Pignari, S. A. and A. Orlandi, "Long-cable effects on conducted emissions levels," IEEE Trans. Electromagnetic Compatibility, Vol. 45, 43-54, 2003.
doi:10.1109/TEMC.2002.808023 Google Scholar
20. Cannas, , B., A. Fanni, and F. Mardei, "Neural characterization of wire bundles multiconductor transmission lines," IEEE Trans. Magnetics, Vol. 38, 785-788, 2002.
doi:10.1109/20.996203 Google Scholar
21. Brand~ao Faria, , J. A. and J. Hildemaro Briceno, "On the modal analysis of asymmetrical three-phase transmission lines using standard transformation matrices," IEEE Trans. Power Delivery, Vol. 12, 1760-1765, 1997.
doi:10.1109/61.634202 Google Scholar
22. Machado, , M. V. M., J. A. Brandao Faria, and J. F. Borges da Silva, "Ground return effect on wave prop-agation parameters of overhead power cables," IEEE Trans. Power Delivery,, Vol. 5, 825-832, 1990.
doi:10.1109/61.53089 Google Scholar
23. Gurbaxani, , S. H. and A. K. Agrawal, "Further experimental verification of frequency-domain multiconductor-transmission-line characterization," IEEE Trans. Electromagnetic Compatibility, Vol. 25, 374-376, 1983.
doi:10.1109/TEMC.1983.304105 Google Scholar
24. Paul, C. R., "Solution of the transmission-line equations for three-conductor lines in homogeneous media," IEEE Trans. Electromagnetic Compatibility, Vol. 45, 216-222, 1978.
doi:10.1109/TEMC.1978.303651 Google Scholar
25. Paul, C. R., "Reference potential terms in static capacitance calculations via the method of moments," IEEE Trans. Electromagnetic Compatibility, Vol. 20, 267-269, 1978.
doi:10.1109/TEMC.1978.303657 Google Scholar
26. Paul, , C. R., "Computation of the transmission line inductance and capacitance matrices from the generalized capacitance matrix," IEEE Trans. Electromagnetic Compatibility, Vol. 18, 175-183, 1975. Google Scholar
27. Paul, , C. R., "Computation of the capacitance matrix for systems of dielectric-coated cylindrical conductors," IEEE Trans. Electromagnetic Compatibility, Vol. 17, 238-248, 1976. Google Scholar
28. Musolino, A., M. Raugi, and M. Tucci, "Cyclic short-time varying channel estimation in OFDM power-line communication," IEEE Trans. Power Delivery , Vol. 23, 157-163, 2008.
doi:10.1109/TPWRD.2007.910995 Google Scholar
29. Ma, Y. H., P. L. So, and E. Gunawan, "Comparison of CDMA and OFDM systems for broadband power line communications," IEEE Trans. Power Delivery , Vol. 23, 1876-1885, 2008.
doi:10.1109/TPWRD.2008.919043 Google Scholar
30. Crussiµere, , M., J.-Y. Baudais, and J.-F. Hielard, "Adaptive spread- pectrum multicarrier multiple-access over wirelines," IEEE J. Selected Areas in Communications, Vol. 24, 1377-1388, 2006.
doi:10.1109/JSAC.2006.874425 Google Scholar
31. Ma, , Y. H., P. L. So, and E. Gunawan, "Performance analysis of OFDM systems for broadband power line communications under impulsive noise and multipath effects," IEEE Trans. Power Delivery, Vol. 20, 674-682, 2005.
doi:10.1109/TPWRD.2005.844320 Google Scholar
32. Shanmugam Surendran, K. and H. Leung, "An analog spread-spectrum interface for power-line data communication in home networking," IEEE Trans. Power Delivery, Vol. 20, 80-89, 2005.
doi:10.1109/TPWRD.2004.838468 Google Scholar
33. Zhang, Y. and S. Cheng, "A novel multicarrier signal transmission system over multipath channel of low-voltage power line," IEEE Trans. Power Delivery, Vol. 19, 1668-1672, 2004.
doi:10.1109/TPWRD.2004.835424 Google Scholar
34. Del Re, E., R. Fantacci, S. Morosi, and R. Seravalle, "Comparison of CDMA and OFDM techniques for downstream power-line communications on low voltage grid," IEEE Trans. Power Delivery, Vol. 18, 1104-1109, 2003.
doi:10.1109/TPWRD.2003.817517 Google Scholar
35. Nishiyama, T., T. Shirai, M. Itami, K. Itoh, and H. Aghvami, "A study on controlling transmission power of carriers of OFDM signal combined with data symbol spreading in frequency domain," IEICE Trans. Fundamentals, Vol. E86-A, 2117-2124, 2003. Google Scholar
36. Fantacci, R. and S. Morosi, "Multicarrier spread spectrum techniques for downstream power-line communications on low voltage grid," Int. J. Communication Systems, Vol. 16, 401-416, 2003.
doi:10.1002/dac.599 Google Scholar
37. Biglieri, E., "Coding and modulation for a horrible channel," IEEE Communications Mag., Vol. 41, 92-98, 2003.
doi:10.1109/MCOM.2003.1200107 Google Scholar
38. Katayama, M., "Introduction to robust, reliable, and high-speed power-line communications systems," IEICE Trans. Fundamentals, Vol. E84, 2958-2965, 2001. Google Scholar
39. Thrimawithana, D. J. and U. K. Madawala, "Generalised mathematical model for high-voltage pulse propagation along electric fence structures," IET Science, Measurement & Technology, Vol. 5, 109-116, 2011.
doi:10.1049/iet-smt.2010.0053 Google Scholar
40. Barmada, S., A. Musolino, and M. Raugi, "Wavelet-based time-domain solution of multiconductor transmission lines with skin and proximity effect," IEEE Trans. Electromagnetic Compatibility, Vol. 47, 774-780, 2005.
doi:10.1109/TEMC.2005.857868 Google Scholar
41. Bandurski, W., "Simulation of single and coupled transmission lines using time-domain scattering parameters," IEEE Trans. Circuits and Systems --- I: Fundamental Theory and Applications, Vol. 47, 1224-1234, 2000.
doi:10.1109/81.873876 Google Scholar
42. Raugi, M., "Wavelet transform solution of multiconductor transmission line transients," IEEE Trans. Magnetics, Vol. 35, 1554-1557, 1999.
doi:10.1109/20.767266 Google Scholar
43. Mao, J.-F. and Z.-F. Li, "Analysis of the time response of multiconductor transmission lines with frequency-dependent losses by the method of convolution-characteristics," IEEE Trans. Microwave Theory and Techniques, Vol. 40, 637-644, 1992.
doi:10.1109/22.137402 Google Scholar
44. Djordjevic, A. R. and T. K. Sarkar, "Analysis of time response of lossy multiconductor transmission line networks," IEEE Trans. Microwave Theory and Techniques, Vol. 35, 898-908, 1987.
doi:10.1109/TMTT.1987.1133776 Google Scholar
45. Hatziadoniu, C. J., N. B. Harp, and A. J. Sugg, "Finite-element models for open-air power lines in broadband PLC," IEEE Trans. Power Delivery, Vol. 21, 1898-1904, 2006.
doi:10.1109/TPWRD.2006.874625 Google Scholar
46. Van der Merwe, J., J. H. Cloette, and H. C. Reader, "Transients on multiconductor transmission lines above dissipative earth," IEEE Trans. Electromagnetic Compatibility , Vol. 45, 404-415, 2003.
doi:10.1109/TEMC.2003.811297 Google Scholar
47. Lu, T., X. Cui, and L. Li, "Transient analysis of aerial multi-conductor transmission lines with branch," IEEE Trans. Magnetics, Vol. 37, 3298-3302, 2001.
doi:10.1109/20.952599 Google Scholar
48. Orlandi, A. and C. R. Paul, "An effcient characterization of interconnected multiconductor-transmission-line networks," IEEE Trans. Microwave Theory and Techniques, Vol. 48, 466-470, 2000.
doi:10.1109/22.826849 Google Scholar
49. Rachidi, F., C. A. Nucci, and M. Ianoz, "Transient analysis of multiconductor lines above a lossy ground ," IEEE Trans. Power Delivery, Vol. 14, 294-302, 1999.
doi:10.1109/61.736741 Google Scholar
55. Orlandi , A. and C. R. Paul, "FDTD analysis of lossy multiconductor transmission lines terminated in arbitrary loads," IEEE Trans. Electromagnetic Compatibility, Vol. 38, 388-399, 1996.
doi:10.1109/15.536069 Google Scholar
56. Douvanis, A., L. Xin, M. S. Nakhla, and R. Achar, "Passive closed-form transmission-line model for general-purpose circuit simulators," IEEE Trans. Microwave Theory and Techniques, Vol. 47, 2450-2459, 1999.
doi:10.1109/22.808992 Google Scholar
57. Wlodarczyk, A. J., V. Trenkic, R. A. Scaramuzza, and C. Christopoulos, "A fully integrated multiconductor model for TLM," IEEE Trans. Microwave Theory and Techniques, Vol. 46, 2431-2437, 1998.
doi:10.1109/22.739231 Google Scholar
58. Nakhla, N., M. Nakhla, and R. Achar, "Simplified delay extraction-based passive transmission line macromodeling algorithm," IEEE Trans. Advanced Packaging, Vol. 33, 498-509, 2010.
doi:10.1109/TADVP.2009.2032157 Google Scholar
59. Antonini, G., "A dyadic Green's function based method for the transient analysis of lossy and dispersive multiconductor trans mission lines," IEEE Trans. Microwave Theory and Techniques, Vol. 56, 880-895, 2008.
doi:10.1109/TMTT.2008.919651 Google Scholar
60. Nakhla , N. M., A. Dounavis, R. Achar, and M. S. Nakhla, "DEPACT: Delay extraction-based passive compact transmission-line macromodeling algorithm," IEEE Trans. Advanced Packaging, Vol. 28, 13-23, 2005.
doi:10.1109/TADVP.2004.841677 Google Scholar
61. Gunupudi, P. K., R. Khazaka, M. S. Nakhla, T. Smy, and D. Celo, "Passive parameterized time-domain macromodels for high-speed ansmission-line networks," IEEE Trans. Microwave Theory and Techniques , Vol. 51, 2347-2354, 2003.
doi:10.1109/TMTT.2003.820169 Google Scholar
62. Gustavsen, B. and A. Semlyen, "Admittance-based modeling of transmission lines by a folded line equivalent," IEEE Trans. Power Delivery, Vol. 24, 231-239, 2009.
doi:10.1109/TPWRD.2008.2002960 Google Scholar
63. Antonini, G., "A new methodology for the transient analysis of lossy and dispersive multiconductor transmission lines," IEEE Trans. Microwave Theory and Techniques, Vol. 52, 2227-2239, 2004.
doi:10.1109/TMTT.2004.834581 Google Scholar
64. Douvanis, A., R. Achar, and M. Nakhla, "A general class of passive macromodels for lossy multiconductor transmission lines," IEEE Trans. Microwave Theory and Techniques , Vol. 49, 1686-1696, 2001.
doi:10.1109/22.954772 Google Scholar
65. Oh, K. S., "Accurate transient simulation of transmission lines with the skin effect," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, 389-396, 2000.
doi:10.1109/43.833207 Google Scholar
66. Morhed, A., B. Gustavsen, and M. Tartibi, "A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables," IEEE Trans. Power Delivery, Vol. 14, 1032-1038, 1999.
doi:10.1109/61.772350 Google Scholar
67. Maffucci, A. and G. Miano, "Irregular terms in the impulse response of a multiconductor lossy transmission line," IEEE Trans. Circuits and Systems --- I: Fundamental Theory and Applications, Vol. 46, 788-805, 1999.
doi:10.1109/81.774223 Google Scholar
68. Celik, M. and L. T. Pileggi, "Simulation of lossy multiconductor transmission lines using backward euler integration," IEEE Trans. Circuits and Systems --- Fundamental Theory and Applications,, Vol. 45, 238-243, 1998.
doi:10.1109/81.662697 Google Scholar
69. Bandi, V. G. and H. Asai, "Effent simulation of lossy coupled transmission lines by the application of window partitioning technique to the waveform relaxation approach," IEICE Trans. Fundamentals, Vol. E77-A, 1742-1752, 1994. Google Scholar
70. Bracken, J. E., V. Raghavan, and R. A. Rohrer, "Interconnect simulation with asymptotic waveform evaluation, (AWE)," IEEE Trans. Circuits and Systems --- I: Fundamental Theory and Applications, Vol. 39, 869-878, 1992.
doi:10.1109/81.199886 Google Scholar
71. Tang , T. K., M. S. Nakhla, and R. Griffth, "Analysis of lossy multiconductor transmission lines using the asymptotic waveform evaluation technique," IEEE Trans. Microwave Theory and Techniques, Vol. 39, 2107-2116, 1991.
doi:10.1109/22.106547 Google Scholar
72. Palusinski, O. A. and A. Lee, "Analysis of transients in nonuniform and uniform multiconductor transmission lines," IEEE Trans. Microwave Theory and Techniques, Vol. 37, 127-138, 1989.
doi:10.1109/22.20031 Google Scholar
73. He, H., S. Cheng, Y. Zhang, and J. Nguimbis, "reflection of signal transmitted in low-voltage powerline with complex wavelet," IEEE Trans. Power Delivery, Vol. 19, 86-91, 2004.
doi:10.1109/TPWRD.2003.820209 Google Scholar
74. Leva, S. and A. P. Morando, "Waves and complex power in transmission lines," IEEE Trans. Power Delivery, Vol. 18, 1320-1327, 2003.
doi:10.1109/TPWRD.2003.817746 Google Scholar
75. Paul, C. R., "Solution of the transmission-line equations under the weak-coupling assumption," IEEE Trans. Electromagnetic Compatibility, Vol. 44, 413-423, 2002.
doi:10.1109/TEMC.2002.801753 Google Scholar
76. Poudroux, C., M. Rifi, and B. Demoulin, "A simplified approach to determine the amplitude of the transient voltage induced on a cable bundle," IEEE Trans. Electromagnetic Compatibility37, Vol. 37, 497-504, 1995.
doi:10.1109/15.477304 Google Scholar
77. Paul, C. R., "Literal solutions for the time-domain response of a two-conductor transmission line excited by an incident electromagnetic field," IEEE Trans. Electromagnetic Compatibility, Vol. 37, 241-251, 1995.
doi:10.1109/15.385889 Google Scholar
78. Lindell, I. V. and Q. Gu, "Theory of time-domain quasi-TEM modes in inhomogeneous multiconductor lines," IEEE Trans. Microwave Theory and Techniques, Vol. 35, 893-897, 1987.
doi:10.1109/TMTT.1987.1133775 Google Scholar
79. Djordjevic, A. R., T. K. Sarkar, and R. F. Harrington, "Time-domain response of multiconductor transmission lines," Proc. IEEE, Vol. 75, 743-764, 1987.
doi:10.1109/PROC.1987.13797 Google Scholar
80. Gruodis, A. J. and C. S. Chang, "Coupled lossy transmission line characterization and simulation," IBM J. Research and Development, Vol. 25, 25-41, 1981.
doi:10.1147/rd.251.0025 Google Scholar
81. Agrawal, A. K., H. M. Fowles, L. D. Scott, and S. H. Gurbaxani, "Application of modal analysis to the transient response of multiconductor transmission lines with branches ," IEEE Trans. Electromagnetic Compatibility, Vol. 21, 256-262, 1979.
doi:10.1109/TEMC.1979.303736 Google Scholar
82. Paul, C. R., "Analysis of Multiconductor Transmission Lines," John Wiley & Sons, Inc., 46-76, 1994. Google Scholar
83. Faria, J. B., "Multiconductor Transmission-Line Structures: Modal Analysis Techniques," John Wiley & Sons, Inc., 1993. Google Scholar
84. Paul, C. R., "Decoupling the multiconductor transmission line equations," IEEE Trans. Microwave Theory and Techniques, Vol. 44, 1429-1440, 1996.
doi:10.1109/22.536026 Google Scholar
85. Faria, J. B., "Overhead three-phase transmission lines: Non-diagonalizable situations," IEEE Trans. Power Delivery, Vol. 3, 1348-1355, 1988.
doi:10.1109/61.193930 Google Scholar