Vol. 52
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-06-10
Travelling-Wave Modelling of Uniform Multi-Conductor Transmission Line Networks --- Part I: Analytical Derivation
By
Progress In Electromagnetics Research B, Vol. 52, 253-293, 2013
Abstract
In Part I of this work, analysis of uniform multi-conductor transmission line networks is performed on travelling-wave basis, via "quasi-TEM" approach. Narrowband interpretation of the modal theory in the time domain and quantification of the multiple reflections effect are both included. Theoretical demonstration and analytical formulation are provided, along with guidelines towards computational implementation. Any network formed of lossy, diagonalisable uniform multi-conductor transmission lines of either distinct or degenerate eigenvalues is covered. This work applies especially in the field of Power-Line Communications, as High-Frequency transmission over the power electric network is dominated by multipath propagation.
Citation
Ioannis C. Papaleonidopoulos, Nickolas J. Theodorou, and Christos N. Capsalis, "Travelling-Wave Modelling of Uniform Multi-Conductor Transmission Line Networks --- Part I: Analytical Derivation," Progress In Electromagnetics Research B, Vol. 52, 253-293, 2013.
doi:10.2528/PIERB13012007
References

1. Dostert, K., Powerline Communications, 251-263, Prentice Hall PTR, Inc., Upper Saddle River, 2001.

2. Mori, A., Y. Watanabe, M. Tokuda, and K. Kawamoto, "The power line transmission characteristics for an OFDM signal," Progress In Electromagnetics Research, Vol. 61, 279-290, 2006.
doi:10.2528/PIER06042207

3. Amirshahi, P. and M. Kavehrad, "High-frequency characteristics of overhead multiconductor power lines for broadband communications," IEEE J. Selected Areas in Communications, Vol. 24, 1292-1303, 2006.
doi:10.1109/JSAC.2006.874399

4. Esmailian, T., F. R. Kschischang, and P. G. Gulak, "Inbuilding power lines as high-speed communication channels: Channel characterization and a test channel ensemble," Int. J. Communication Systems, Vol. 16, 381-400, 2003.
doi:10.1002/dac.596

5. Papaleonidopoulos, , I. C., C. N. Capsalis, C. G. Karagiannopoulos, and N. J. Theodorou, "Statistical analysis and simulation of indoor single-phase low voltage power-line communication channels on the basis of multipath propagation," IEEE Trans. Consumer Electronics, Vol. 49, 89-99, 2003.
doi:10.1109/TCE.2003.1205460

6. Zimmermann, M. and K. Dostert, "A multipath model for the powerline channel," IEEE Trans. Communications, Vol. 50, 553-539, 2002.
doi:10.1109/26.996069

7. Canete, F. J., L. Diez, J. A. Corties, and J. T. Entrambasaguas, "Broadband modelling of indoor power-line channels," IEEE Trans. Consumer Electronics, Vol. 48, 175, 2002.
doi:10.1109/TCE.2002.1010108

8. Liu, , D., E. Flint, B. Gaucher, and Y. Kwark, "Wide band AC power line characterization," IEEE Trans. Consumer Electronics, Vol. 45, 1087-1097, 1999.
doi:10.1109/30.809186

9. Tanaka, , M., "Transmission characteristics of a power line used for data communications at high frequencies," IEEE Trans. Consumer Electronics, Vol. 35, 37-42, 1989.
doi:10.1109/30.24652

10. Andreou, , G. T. and D. P. Labridis, "Experimental evaluation of a low-voltage power distribution cable model basedon a finite-element approach," IEEE Trans. Power Delivery, Vol. 22, 1445-1460, 2007.

11. Andreou, G. T. and D. P. Labridis, "Electrical parameters of low-voltage power distribution cables used for power-line communications," IEEE Trans. Power Delivery, Vol. 22, 879-886, 2007.
doi:10.1109/TPWRD.2006.881577

12. Papaleonidopoulos, , I. C., C. G. Karagiannopoulos, and N. J. Theodorou, "Evaluation of the two-conductor HF transmission-line model for symmetrical indoor triple-pole cables," Measurement, Vol. 39, 719-728, 2006.
doi:10.1016/j.measurement.2006.03.007

13. Faria and J. B., "Evaluation of indoor cable capacitances taking into account conductor proximity and dielectric heterogeneity effects," IEEE Trans. Power Delivery, Vol. 21, 1919-1926, 2006.
doi:10.1109/TPWRD.2006.877096

14. Faria, , J. B. and M. G. das Neves, "Accurate evaluation of indoor triplex cable capacitances taking conductor proximity effects into account," IEEE Trans. Power Delivery, Vol. 21, 1238-1244, 2006.
doi:10.1109/TPWRD.2005.860233

15. Papaleonidopoulos, I. C., C. G. Karagiannopoulos, N. J. Theodorou, and C. N. Capsalis, "Theoretical transmission-line study of symmetrical indoor triple-pole cables for single-phase HF signalling," IEEE Trans. Power Delivery, Vol. 20, 646-654, 2005.
doi:10.1109/TPWRD.2005.844329

16. Meng, H., S. Chen, Y. L. Guan, C. L. Law, P. L. So, E. Gunawan, and T. T. Lie, "Modeling of transfer characteristics for the broadband power line communication channel," IEEE Trans. Power Delivery, Vol. 19, 1057-1064, 2004.
doi:10.1109/TPWRD.2004.824430

17. Lazaropoulos, A. G., "Towards broadband over power lines systems integration: Transmission characteristics of underground low-voltage distribution power lines," Progress In Electromagnetics Research B, Vol. 39, 89-114, 2012.
doi:10.2528/PIERB12012409

18. Levin, , B. M., "Calculation of electrical parameters of two-wire lines in multiconductor cables," IEEE Trans. Electromagnetic Compatibility, Vol. 50, 697-703, 2008.
doi:10.1109/TEMC.2008.927924

19. Pignari, S. A. and A. Orlandi, "Long-cable effects on conducted emissions levels," IEEE Trans. Electromagnetic Compatibility, Vol. 45, 43-54, 2003.
doi:10.1109/TEMC.2002.808023

20. Cannas, , B., A. Fanni, and F. Mardei, "Neural characterization of wire bundles multiconductor transmission lines," IEEE Trans. Magnetics, Vol. 38, 785-788, 2002.
doi:10.1109/20.996203

21. Brand~ao Faria, , J. A. and J. Hildemaro Briceno, "On the modal analysis of asymmetrical three-phase transmission lines using standard transformation matrices," IEEE Trans. Power Delivery, Vol. 12, 1760-1765, 1997.
doi:10.1109/61.634202

22. Machado, , M. V. M., J. A. Brandao Faria, and J. F. Borges da Silva, "Ground return effect on wave prop-agation parameters of overhead power cables," IEEE Trans. Power Delivery,, Vol. 5, 825-832, 1990.
doi:10.1109/61.53089

23. Gurbaxani, , S. H. and A. K. Agrawal, "Further experimental verification of frequency-domain multiconductor-transmission-line characterization," IEEE Trans. Electromagnetic Compatibility, Vol. 25, 374-376, 1983.
doi:10.1109/TEMC.1983.304105

24. Paul, C. R., "Solution of the transmission-line equations for three-conductor lines in homogeneous media," IEEE Trans. Electromagnetic Compatibility, Vol. 45, 216-222, 1978.
doi:10.1109/TEMC.1978.303651

25. Paul, C. R., "Reference potential terms in static capacitance calculations via the method of moments," IEEE Trans. Electromagnetic Compatibility, Vol. 20, 267-269, 1978.
doi:10.1109/TEMC.1978.303657

26. Paul, , C. R., "Computation of the transmission line inductance and capacitance matrices from the generalized capacitance matrix," IEEE Trans. Electromagnetic Compatibility, Vol. 18, 175-183, 1975.

27. Paul, , C. R., "Computation of the capacitance matrix for systems of dielectric-coated cylindrical conductors," IEEE Trans. Electromagnetic Compatibility, Vol. 17, 238-248, 1976.

28. Musolino, A., M. Raugi, and M. Tucci, "Cyclic short-time varying channel estimation in OFDM power-line communication," IEEE Trans. Power Delivery , Vol. 23, 157-163, 2008.
doi:10.1109/TPWRD.2007.910995

29. Ma, Y. H., P. L. So, and E. Gunawan, "Comparison of CDMA and OFDM systems for broadband power line communications," IEEE Trans. Power Delivery , Vol. 23, 1876-1885, 2008.
doi:10.1109/TPWRD.2008.919043

30. Crussiµere, , M., J.-Y. Baudais, and J.-F. Hielard, "Adaptive spread- pectrum multicarrier multiple-access over wirelines," IEEE J. Selected Areas in Communications, Vol. 24, 1377-1388, 2006.
doi:10.1109/JSAC.2006.874425

31. Ma, , Y. H., P. L. So, and E. Gunawan, "Performance analysis of OFDM systems for broadband power line communications under impulsive noise and multipath effects," IEEE Trans. Power Delivery, Vol. 20, 674-682, 2005.
doi:10.1109/TPWRD.2005.844320

32. Shanmugam Surendran, K. and H. Leung, "An analog spread-spectrum interface for power-line data communication in home networking," IEEE Trans. Power Delivery, Vol. 20, 80-89, 2005.
doi:10.1109/TPWRD.2004.838468

33. Zhang, Y. and S. Cheng, "A novel multicarrier signal transmission system over multipath channel of low-voltage power line," IEEE Trans. Power Delivery, Vol. 19, 1668-1672, 2004.
doi:10.1109/TPWRD.2004.835424

34. Del Re, E., R. Fantacci, S. Morosi, and R. Seravalle, "Comparison of CDMA and OFDM techniques for downstream power-line communications on low voltage grid," IEEE Trans. Power Delivery, Vol. 18, 1104-1109, 2003.
doi:10.1109/TPWRD.2003.817517

35. Nishiyama, T., T. Shirai, M. Itami, K. Itoh, and H. Aghvami, "A study on controlling transmission power of carriers of OFDM signal combined with data symbol spreading in frequency domain," IEICE Trans. Fundamentals, Vol. E86-A, 2117-2124, 2003.

36. Fantacci, R. and S. Morosi, "Multicarrier spread spectrum techniques for downstream power-line communications on low voltage grid," Int. J. Communication Systems, Vol. 16, 401-416, 2003.
doi:10.1002/dac.599

37. Biglieri, E., "Coding and modulation for a horrible channel," IEEE Communications Mag., Vol. 41, 92-98, 2003.
doi:10.1109/MCOM.2003.1200107

38. Katayama, M., "Introduction to robust, reliable, and high-speed power-line communications systems," IEICE Trans. Fundamentals, Vol. E84, 2958-2965, 2001.

39. Thrimawithana, D. J. and U. K. Madawala, "Generalised mathematical model for high-voltage pulse propagation along electric fence structures," IET Science, Measurement & Technology, Vol. 5, 109-116, 2011.
doi:10.1049/iet-smt.2010.0053

40. Barmada, S., A. Musolino, and M. Raugi, "Wavelet-based time-domain solution of multiconductor transmission lines with skin and proximity effect," IEEE Trans. Electromagnetic Compatibility, Vol. 47, 774-780, 2005.
doi:10.1109/TEMC.2005.857868

41. Bandurski, W., "Simulation of single and coupled transmission lines using time-domain scattering parameters," IEEE Trans. Circuits and Systems --- I: Fundamental Theory and Applications, Vol. 47, 1224-1234, 2000.
doi:10.1109/81.873876

42. Raugi, M., "Wavelet transform solution of multiconductor transmission line transients," IEEE Trans. Magnetics, Vol. 35, 1554-1557, 1999.
doi:10.1109/20.767266

43. Mao, J.-F. and Z.-F. Li, "Analysis of the time response of multiconductor transmission lines with frequency-dependent losses by the method of convolution-characteristics," IEEE Trans. Microwave Theory and Techniques, Vol. 40, 637-644, 1992.
doi:10.1109/22.137402

44. Djordjevic, A. R. and T. K. Sarkar, "Analysis of time response of lossy multiconductor transmission line networks," IEEE Trans. Microwave Theory and Techniques, Vol. 35, 898-908, 1987.
doi:10.1109/TMTT.1987.1133776

45. Hatziadoniu, C. J., N. B. Harp, and A. J. Sugg, "Finite-element models for open-air power lines in broadband PLC," IEEE Trans. Power Delivery, Vol. 21, 1898-1904, 2006.
doi:10.1109/TPWRD.2006.874625

46. Van der Merwe, J., J. H. Cloette, and H. C. Reader, "Transients on multiconductor transmission lines above dissipative earth," IEEE Trans. Electromagnetic Compatibility , Vol. 45, 404-415, 2003.
doi:10.1109/TEMC.2003.811297

47. Lu, T., X. Cui, and L. Li, "Transient analysis of aerial multi-conductor transmission lines with branch," IEEE Trans. Magnetics, Vol. 37, 3298-3302, 2001.
doi:10.1109/20.952599

48. Orlandi, A. and C. R. Paul, "An effcient characterization of interconnected multiconductor-transmission-line networks," IEEE Trans. Microwave Theory and Techniques, Vol. 48, 466-470, 2000.
doi:10.1109/22.826849

49. Rachidi, F., C. A. Nucci, and M. Ianoz, "Transient analysis of multiconductor lines above a lossy ground ," IEEE Trans. Power Delivery, Vol. 14, 294-302, 1999.
doi:10.1109/61.736741

55. Orlandi , A. and C. R. Paul, "FDTD analysis of lossy multiconductor transmission lines terminated in arbitrary loads," IEEE Trans. Electromagnetic Compatibility, Vol. 38, 388-399, 1996.
doi:10.1109/15.536069

56. Douvanis, A., L. Xin, M. S. Nakhla, and R. Achar, "Passive closed-form transmission-line model for general-purpose circuit simulators," IEEE Trans. Microwave Theory and Techniques, Vol. 47, 2450-2459, 1999.
doi:10.1109/22.808992

57. Wlodarczyk, A. J., V. Trenkic, R. A. Scaramuzza, and C. Christopoulos, "A fully integrated multiconductor model for TLM," IEEE Trans. Microwave Theory and Techniques, Vol. 46, 2431-2437, 1998.
doi:10.1109/22.739231

58. Nakhla, N., M. Nakhla, and R. Achar, "Simplified delay extraction-based passive transmission line macromodeling algorithm," IEEE Trans. Advanced Packaging, Vol. 33, 498-509, 2010.
doi:10.1109/TADVP.2009.2032157

59. Antonini, G., "A dyadic Green's function based method for the transient analysis of lossy and dispersive multiconductor trans mission lines," IEEE Trans. Microwave Theory and Techniques, Vol. 56, 880-895, 2008.
doi:10.1109/TMTT.2008.919651

60. Nakhla , N. M., A. Dounavis, R. Achar, and M. S. Nakhla, "DEPACT: Delay extraction-based passive compact transmission-line macromodeling algorithm," IEEE Trans. Advanced Packaging, Vol. 28, 13-23, 2005.
doi:10.1109/TADVP.2004.841677

61. Gunupudi, P. K., R. Khazaka, M. S. Nakhla, T. Smy, and D. Celo, "Passive parameterized time-domain macromodels for high-speed ansmission-line networks," IEEE Trans. Microwave Theory and Techniques , Vol. 51, 2347-2354, 2003.
doi:10.1109/TMTT.2003.820169

62. Gustavsen, B. and A. Semlyen, "Admittance-based modeling of transmission lines by a folded line equivalent," IEEE Trans. Power Delivery, Vol. 24, 231-239, 2009.
doi:10.1109/TPWRD.2008.2002960

63. Antonini, G., "A new methodology for the transient analysis of lossy and dispersive multiconductor transmission lines," IEEE Trans. Microwave Theory and Techniques, Vol. 52, 2227-2239, 2004.
doi:10.1109/TMTT.2004.834581

64. Douvanis, A., R. Achar, and M. Nakhla, "A general class of passive macromodels for lossy multiconductor transmission lines," IEEE Trans. Microwave Theory and Techniques , Vol. 49, 1686-1696, 2001.
doi:10.1109/22.954772

65. Oh, K. S., "Accurate transient simulation of transmission lines with the skin effect," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, 389-396, 2000.
doi:10.1109/43.833207

66. Morhed, A., B. Gustavsen, and M. Tartibi, "A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables," IEEE Trans. Power Delivery, Vol. 14, 1032-1038, 1999.
doi:10.1109/61.772350

67. Maffucci, A. and G. Miano, "Irregular terms in the impulse response of a multiconductor lossy transmission line," IEEE Trans. Circuits and Systems --- I: Fundamental Theory and Applications, Vol. 46, 788-805, 1999.
doi:10.1109/81.774223

68. Celik, M. and L. T. Pileggi, "Simulation of lossy multiconductor transmission lines using backward euler integration," IEEE Trans. Circuits and Systems --- Fundamental Theory and Applications,, Vol. 45, 238-243, 1998.
doi:10.1109/81.662697

69. Bandi, V. G. and H. Asai, "Effent simulation of lossy coupled transmission lines by the application of window partitioning technique to the waveform relaxation approach," IEICE Trans. Fundamentals, Vol. E77-A, 1742-1752, 1994.

70. Bracken, J. E., V. Raghavan, and R. A. Rohrer, "Interconnect simulation with asymptotic waveform evaluation, (AWE)," IEEE Trans. Circuits and Systems --- I: Fundamental Theory and Applications, Vol. 39, 869-878, 1992.
doi:10.1109/81.199886

71. Tang , T. K., M. S. Nakhla, and R. Griffth, "Analysis of lossy multiconductor transmission lines using the asymptotic waveform evaluation technique," IEEE Trans. Microwave Theory and Techniques, Vol. 39, 2107-2116, 1991.
doi:10.1109/22.106547

72. Palusinski, O. A. and A. Lee, "Analysis of transients in nonuniform and uniform multiconductor transmission lines," IEEE Trans. Microwave Theory and Techniques, Vol. 37, 127-138, 1989.
doi:10.1109/22.20031

73. He, H., S. Cheng, Y. Zhang, and J. Nguimbis, "reflection of signal transmitted in low-voltage powerline with complex wavelet," IEEE Trans. Power Delivery, Vol. 19, 86-91, 2004.
doi:10.1109/TPWRD.2003.820209

74. Leva, S. and A. P. Morando, "Waves and complex power in transmission lines," IEEE Trans. Power Delivery, Vol. 18, 1320-1327, 2003.
doi:10.1109/TPWRD.2003.817746

75. Paul, C. R., "Solution of the transmission-line equations under the weak-coupling assumption," IEEE Trans. Electromagnetic Compatibility, Vol. 44, 413-423, 2002.
doi:10.1109/TEMC.2002.801753

76. Poudroux, C., M. Rifi, and B. Demoulin, "A simplified approach to determine the amplitude of the transient voltage induced on a cable bundle," IEEE Trans. Electromagnetic Compatibility37, Vol. 37, 497-504, 1995.
doi:10.1109/15.477304

77. Paul, C. R., "Literal solutions for the time-domain response of a two-conductor transmission line excited by an incident electromagnetic field," IEEE Trans. Electromagnetic Compatibility, Vol. 37, 241-251, 1995.
doi:10.1109/15.385889

78. Lindell, I. V. and Q. Gu, "Theory of time-domain quasi-TEM modes in inhomogeneous multiconductor lines," IEEE Trans. Microwave Theory and Techniques, Vol. 35, 893-897, 1987.
doi:10.1109/TMTT.1987.1133775

79. Djordjevic, A. R., T. K. Sarkar, and R. F. Harrington, "Time-domain response of multiconductor transmission lines," Proc. IEEE, Vol. 75, 743-764, 1987.
doi:10.1109/PROC.1987.13797

80. Gruodis, A. J. and C. S. Chang, "Coupled lossy transmission line characterization and simulation," IBM J. Research and Development, Vol. 25, 25-41, 1981.
doi:10.1147/rd.251.0025

81. Agrawal, A. K., H. M. Fowles, L. D. Scott, and S. H. Gurbaxani, "Application of modal analysis to the transient response of multiconductor transmission lines with branches ," IEEE Trans. Electromagnetic Compatibility, Vol. 21, 256-262, 1979.
doi:10.1109/TEMC.1979.303736

82. Paul, C. R., "Analysis of Multiconductor Transmission Lines," John Wiley & Sons, Inc., 46-76, 1994.

83. Faria, J. B., "Multiconductor Transmission-Line Structures: Modal Analysis Techniques," John Wiley & Sons, Inc., 1993.

84. Paul, C. R., "Decoupling the multiconductor transmission line equations," IEEE Trans. Microwave Theory and Techniques, Vol. 44, 1429-1440, 1996.
doi:10.1109/22.536026

85. Faria, J. B., "Overhead three-phase transmission lines: Non-diagonalizable situations," IEEE Trans. Power Delivery, Vol. 3, 1348-1355, 1988.
doi:10.1109/61.193930