Vol. 40
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-05-26
Co-Design of a Compact Dual-Band Filter-Antenna for WLAN Application
By
Progress In Electromagnetics Research Letters, Vol. 40, 129-139, 2013
Abstract
A co-designed compact dual-band filter-antenna suitable to be embedded inside a wireless access point (AP) in the 2.45/5.2-GHz wireless local area network (WLAN) bands is presented. The proposed filter-antenna comprises a loop-loaded dual-band monopole radiator and a microstrip dual-band pseudo-interdigital bandpass filter. The monopole consists of a uniform width monopole, two identical capacitively loaded magnetic resonators and a top loaded loop. The two magnetic resonators are loaded at the center of the monopole for dual-band operation and the rectangular loop loaded at the top is involved for miniaturization. Instead of using the traditional 50Ω interfaces, the impedance between the filter and antenna is optimized to improve the performance. The filter-antenna and the system circuit board of an AP share the same substrate and ground plane. In this case the design can fully integrate the circuit board of the AP into an internal filter-antenna solution. The proposed filter-antenna provides good selectivity and rejection in out of band regions and omni-directional radiation patterns within the two desired bands. The measured results show good agreement with the simulated ones.
Citation
Wei-Jun Wu, Qi-Feng Liu, Qi Zhang, and Jing-Ya Deng, "Co-Design of a Compact Dual-Band Filter-Antenna for WLAN Application," Progress In Electromagnetics Research Letters, Vol. 40, 129-139, 2013.
doi:10.2528/PIERL13030411
References

1. Bailey, M.-C., "A stacked patch antenna design with strict bandpass filter characteristics," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 1599-1602, Jun. 2004.

2. Barbarino, S. and S. Consoli, "UWB circular slot antenna provided with an inverted-L notch filter for the 5 GHz WLAN band," Progress In Electromagnetics Research, Vol. 104, 1-13, 2010.
doi:10.2528/PIER10040507

3. Lee, J.-H., N. Kidera, S. Pinel, J. Laskar, and M.-M. Tentzeris, "Fully integrated passive front-end solutions for a V-band LTCC wireless system," IEEE Antennas Wireless Propag. Lett., Vol. 5, 285-288, 2007.
doi:10.1109/LAWP.2007.891964

4. Mandal, M.-K., Z.-N. Chen, and X.-M. Qing, "Compact ultra-wideband filtering antennas on low temperature co-fired ceramic substrate," Asia Pacific Microwave Conference, 2084-2087, Dec. 2009.

5. Wong, S.-W., T.-G. Huang, C.-X. Mao, Z.-N. Chen and Q.-X. Chu, "Planar filtering ultra-wideband (UWB) antenna with shorting pins," IEEE Trans. Antennas Propag., Vol. 61, 948-953, 2013.
doi:10.1109/TAP.2012.2223438

6. Zhu, Y., F.-S. Zhang, R. Zou, Y.-C. Jiao, and Q.-C. Zhou, "Compact ultra-wideband monopole antenna with novel filter," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 2066-2075, 2011.
doi:10.1163/156939311798071974

7. Troubat, M., S. Bila, M. Thevenot, D. Baillargeat, T. Monediµere, S. Verdeyme, and B. Jecko, "Mutual synthesis of combined microwave circuits applied to the design of a filter-antenna subsystem," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 6, 1182-1189, 2007.
doi:10.1109/TMTT.2007.897719

8. Quere, Y., C. Quendo, H.-W. El, and C. Person, "A global synthesis tool and procedure for filter-antenna co-design," 15th International Symposium on Antenna Technology and Applied Electromagnetics, 1-4, 2012.
doi:10.1109/ANTEM.2012.6262376

9. Wu, W.-J., Y.-Z. Yin, S.-L. Zuo, Z.-Y. Zhang, and J.-J. Xie, "A new compact filter-antenna for modern wireless communication systems," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1131-1134, 2011.

10. Zuo, S.-L., W.-J. Wu, and Z.-Y. Zhang, "A simple filter-antenna with compact size for WLAN application," Progress In Electromagnetics Research Letters, Vol. 39, 17-26, 2013.

11. Demir, V., C.-W. P. Huang, and A. Elsherbeni, "Novel dual-band WLAN antennas with integrated band-seltct filter for 802.11 a/b/g WLAN radios in portable devices," Microwave Opt. Technol. Lett., Vol. 49, No. 8, 1868-1872, 2007.
doi:10.1002/mop.22601

12. Zayniyev, D. and D. Budimir, "Dual-band microstrip antenna filter for wireless communications," IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2010.

13. Naeem, U., S. Bila, S. Verdeyme, M. Thevenot, and T. Monediµere, "A compact dual band filter-antenna subsystem for 802.11 WiFi applications," Wireless Technology Conference (EuWIT), 181-184, 2010.

14. Xu, K.-D., Y.-H. Zhang, C.-L. Zhuge, and Y. Fan, "Miniaturized dual-band bandpass filter using short stub-loaded dual-mode resonators," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2264-2273, 2011.
doi:10.1163/156939311798147060

15. Sagawa, M., M. Makimoto, and S. Yamashita, "Geometrical structures and fundamental characteristics of microwave stepped-impedance," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 7, 1078-1085, 1997.
doi:10.1109/22.598444