Vol. 51
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-27
Design of Slotted Ground Hexagonal Microstrip Patch Antenna and Gain Improvement with FSS Screen
By
Progress In Electromagnetics Research B, Vol. 51, 177-199, 2013
Abstract
Three hexagonal patch antennas are designed for circular polarization and experimentally validated. These antennas are labeled; simple hexagonal patch, hexagonal patch with slotted ground and hexagonal patch with parasitic element. The measured impedance bandwidths of the three antennas are 2% for the simple patch, 5.2% for the patch with slotted ground and 6.35% for the antenna with parasitic element. The axial ratio (measured) obtained is 4.73% for the patch with slotted ground and 3.33% for the hexagonal patch antenna with parasitic element. The measured radiation patterns of these antennas are found to be in good agreement with the simulated radiation patterns. The average gain of all the three antennas is also evaluated. A frequency selective surface (FSS) is proposed with dimensions smaller than that of a conventional FSS structure. The measured gain improvement with the proposed FSS is around 3 dB in the operating band.
Citation
Nagendra Kushwaha, and Raj Kumar, "Design of Slotted Ground Hexagonal Microstrip Patch Antenna and Gain Improvement with FSS Screen," Progress In Electromagnetics Research B, Vol. 51, 177-199, 2013.
doi:10.2528/PIERB13031604
References

1. Pozar, D. M. and S. M. Duffy, "A dual-band circularly polarized aperture-coupled stacked microstrip antenna for global positioning satellite," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 11, 1618-1625, Nov. 1997.
doi:10.1109/8.650073

2. Sharma, P. and K. C. Gupta, "Analysis and optimized design of single feed circularly polarized microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 6, 949-955, Nov. 1983.
doi:10.1109/TAP.1983.1143162

3. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

4. Ray, K. P., D. M. Suple, and N. Kant, "Suspended hexagonal microstrip antennas for circular polarization," International Journal of Microwave and Optical Technology, Vol. 5, No. 3, May 2010.

5. Ramirez, R. R., F. De Flaviis, and N. G. Alexopoules, "Single-feed circularly polarized microstrip ring antenna and arrays," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 7, 1040-1047, Jul. 2000.
doi:10.1109/8.876322

6. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, Dedham, MA, 1980.

7. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House Publishers, London, 2003.

8. Pirhadi, A., H. Bahrami, and J. Nasri, "Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2101-2106, Apr. 2012.
doi:10.1109/TAP.2012.2186230

9. Chen, H.-Y. and Y. Tao, "Bandwidth enhancement of a U-slot patch antenna using dual-band frequency-selective surface with double rectangular ring elements," Microwave Opt. Technol. Lett., Vol. 53, No. 7, 1547-1553, Jul. 2011.
doi:10.1002/mop.26066

10. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305

11. Chaimool, S., K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a meta material reflective surface," Progress In Electromagnetics Research B, Vol. 22, 23-37, 2010.
doi:10.2528/PIERB10031901

12. Arnaud, E., R. Chantalat, M. Koubeissi, T. Monediere, E. Rodes, and M. Thevenot, "Global design of an EBG antenna and meander-line polarizer for circular polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 215-218, 2010.
doi:10.1109/LAWP.2010.2045098

13. Arnaud, E., R. Chantalat, T. Monediere, E. Rodes, and M. Thevenot, "Performance enhancement of self-polarizing metallic EBG antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 538-541, 2010.
doi:10.1109/LAWP.2010.2051315

14. Singh, D., A. Kumar, S. Meena, and V. Agarwala, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.

15. Lin, H.-N., K.-W. Lin, and S.-C. Chen, "Use of frequency selective surfaces to prevent SAR and improve antenna performance of cellular phones," PIERS Proceedings, 214-218, Suzhou, China, Sep. 12-16, 2011.

16. Munk, A., Frequency Selective Surfaces: Theory and Design, Wiley-Interscience, New York, 2000.

17. Da Silva, M. R., C. de L. N obrega, P. H. da F. Silva, and A. G. D'Assuncao, "Dual-polarized band-stop fss spatial filters using vicsek fractal geometry," Microwave Opt. Technol. Lett., Vol. 55, No. 1, Jan. 2013.
doi:10.1002/mop.27242

18. Agrawal, P. and M. C. Bailey, "An analysis technique for microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 6, 756-759, Nov. 1977.
doi:10.1109/TAP.1977.1141706

19. Thevenot, M., M. S. Denis, A. Reineix, and B. Jecko, "Design of a new photonic cover to increase antenna directivity," Microwave Opt. Technol. Lett., Vol. 22, No. 2, 136-139, Jul. 1999.
doi:10.1002/(SICI)1098-2760(19990720)22:2<136::AID-MOP17>3.0.CO;2-K

20. Weily, A. R., K. P. Esselle, T. S. Bird, and B. C. Sanders, "High-gain 1D EBG resonator antenna," Microwave Opt. Technol. Lett., Vol. 47, No. 2, 107-114, 2005.
doi:10.1002/mop.21095