Vol. 41
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-07-19
MEMS Compatible Sever for 220 GHz Ultra Wide Band Twta: Design and Particle-in-Cell Analysis
By
Progress In Electromagnetics Research Letters, Vol. 41, 135-148, 2013
Abstract
We report a MEMS (micro-electro-mechanical systems) compatible distributed loss type sever design for the 220 GHz double vane half period staggered traveling-wave tube amplifier (TWTA) [1]. The cold test simulations for a full TWT model including input/output couplers and broadband tapered vane transitions incorporating the sever, predicted a return loss (S11) of < -10 dB in the pass band (205 GHz-275 GHz) while an insertion loss/isolation (S21) of < ~-27 dB. The return loss of the TWT circuit did not degrade by the inclusion of the sever (< -10 dB) while still maintaining a good isolation (S21) for the RF signal. Particle-In-Cell (PIC) simulation analysis for the full 220 GHz TWT circuit (a) without sever and (b) with sever was conducted. With the inclusion of the sever, the TWTA showed generally a stabilized output response for all cases. The maximum power from the long sever case was ~25 W for Pin ~50 mW and the gain was ~27 dB. The reverse power was decreased to ~30 mW. For the short sever, the PIC results were even better with a maximum output power of ~62 W and a gain of ~30.92 dB with a reduced reverse power of ~5 mW for an input power of 50 mW at 220 GHz. The FFT spectrum of the RF signal at the output port also showed a spectrally pure waveform at 220 GHz.
Citation
Anisullah Baig, Larry R. Barnett, Diana Gamzina, and Neville C. Luhmann, Jr., "MEMS Compatible Sever for 220 GHz Ultra Wide Band Twta: Design and Particle-in-Cell Analysis," Progress In Electromagnetics Research Letters, Vol. 41, 135-148, 2013.
doi:10.2528/PIERL13032013
References

1. Shin, Y.-M., L. R. Barnett, and N. C. Luhmann Jr., "Strongly confined plasmonic wave propagation through an ultrawideband staggered double grating waveguide," Applied Physics Letters, Vol. 93, 221504-3, 2008.        Google Scholar

2. Tonouchi, M., "Cutting-edge terahertz technology," Nat. Photon.,, Vol. 1, 97-105, 2007.
doi:10.1038/nphoton.2007.3        Google Scholar

3. Appleby, R. and H. B. Wallace, "Standoff detection of weapons and contraband in the 100 GHz to 1 THz Region," IEEE Transactions on Antennas and Propagation, Vol. 55, 2944, 2007.
doi:10.1109/TAP.2007.908543        Google Scholar

4. Booske, J. H., R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, "Vacuum electronic high power terahertz sources," IEEE Transactions on Terahertz Science and Technology, Vol. 1, 54-75, 2011.
doi:10.1109/TTHZ.2011.2151610        Google Scholar

5. Barker, R. J., N. C. Luhmann, Jr., J. H. Booske, and G. S. Nusinovich, Modern Microwave and Millimeter-wave Power Electronics, IEEE/Wiley, 2005.

6. Gilmour, A. S., Principles of Traveling Wave Tubes, Artech House, Norwood, MA, 1994.

7. Sesahdri, R., S. Ghosh, A. Bhansiwal, S. Kamath, and P. K. Jain, "A simple analysis of helical slow-wave structure loaded by dielectric embedded metal segments for wideband traveling-wave tubes," Progress In Electromagnetics Research B, Vol. 20, 303-320, 2010.
doi:10.2528/PIERB10031201        Google Scholar

8. Alaria, M. K., A. Bera, R. K. Sharma, and V. Srivastava, "Design and characterization of helix slow wave structure for Ku-band space TWT," Progress In Electromagnetics Research C, Vol. 16, 171-182, 2010.
doi:10.2528/PIERC10080602        Google Scholar

9. Antonsen, T. M., P. Safier, D. P. Chernin, and B. Levush, "Stability of traveling-wave amplifiers with reflections," IEEE Transactions on Plasma Science, Vol. 30, 1089-1107, 2002.
doi:10.1109/TPS.2002.801563        Google Scholar

10. Kumar, V., A. Vohra, and V. Srivastava, "Nickel and iron as attenuator materials for helix TWT," Indian Journal of Radio and Space Physics, Vol. 36, 345-347, 2007.        Google Scholar

11. Dialetis, D., D. Chernin, T. M. Antonsen Jr., and B. Levush, "Accurate representation of attenuation in helix TWT simulation codes," IEEE Transactions on Electron Devices, Vol. 56, 935-944, 2009.
doi:10.1109/TED.2009.2015647        Google Scholar

12. Baig, A., D. Gamzina, M. Johnson, C. W. Domier, A. Spear, L. R. Barnett, N. C. Luhmann, and Y.-M. Shin, "Experimental characterization of LIGA fabricated 0.22 THz TWT circuits," IEEE International Vacuum Electronics Conference (IVEC), 275-276, 2011.
doi:10.1109/IVEC.2011.5746982        Google Scholar

13. Baig, A., J.-X. Wang, L. R. Barnett, N. C. Luhmann, and Y.-M. Shin, "Beam transport modeling of PPM focused THz sheet beam TWT circuit," IEEE International Vacuum Electronics Conference (IVEC), 351-352, 2011.
doi:10.1109/IVEC.2011.5747020        Google Scholar

14. Shin, Y.-M., L. R. Barnett, and N. C. Luhmann, "Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation," IEEE Transactions on Electron Devices, Vol. 56, 706-712, 2009.
doi:10.1109/TED.2009.2015404        Google Scholar

15. Baig, A., D. Gamzina, R. Barchfeld, C. Domier, L. R. Barnett, and N. C. Luhmann Jr., "0.22 THz wideband sheet electron beam traveling wave tube amplifier: Cold test measurements and beam wave interaction analysis," Physics of Plasmas, Vol. 19, 093110-8, 2012.        Google Scholar

16., http://www-siliconwafer.com/index.html.        Google Scholar

17. Mavinakuli, P., S. Wei, Q. Wang, A. B. Karki, S. Dhage, Z. Wang, D. Young, and Z. Guo., "Polypyrrole/silicon carbide nanocomposites with tunable electrical conductivity," J. Phys. Chem. C., Vol. 114, 3874-3882, 2010.
doi:10.1021/jp911766y        Google Scholar

18. Srivastava, V. and R. G. Carter, "Determination of sever positions in a coupled-cavity TWTs," IEE Proceedings H --- Microwaves, Antennas and Propagation, Vol. 138, 55-60, 1991.
doi:10.1049/ip-h-2.1991.0010        Google Scholar