Vol. 39
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-04-18
Compact Wide Stopband Quasi-Elliptic Function Lowpass Filter Using Quasi-Lumped Elements
By
Progress In Electromagnetics Research Letters, Vol. 39, 151-159, 2013
Abstract
This paper presents a novel quasi-elliptic function lowpass filter (LPF) by using quasi-lumped elements. The proposed LPF is firstly based on a seven-order Chebyshev response lowpass prototype. Then, a series branches of shunt resonant LC circuit is introduced in the filter design to provide a transmission zero close to the transition band, which can improve the roll-off rate of proposed LPF significantly. To implement the lumped elements of lowpass prototype, the high-impedance meander lines are employed to realized the inductors while inter-digital microstrip lines and the microstrip parallel-plate structures are used to realize the capacitors. To validate the proposed method, a LPF with 3 dB cutoff frequency fc at 1.9 GHz is designed and fabricated. The measured results show that the fabricated LPF has a sharp roll-off rate up to -142 dB/octave and -15 dB harmonic suppression from 1.1fc to 9.7fc. Moreover, the fabricated LPF also has a compact size of 0.1λgc × 0.11λgc. Good agreement can observed between the simulation and measurement.
Citation
Chen Miao, Xin Xu, and Wen Wu, "Compact Wide Stopband Quasi-Elliptic Function Lowpass Filter Using Quasi-Lumped Elements," Progress In Electromagnetics Research Letters, Vol. 39, 151-159, 2013.
doi:10.2528/PIERL13032202
References

1. Wu, Y., Y. Liu, S. Li, and C. Yu, "A new wide-stopband low-pass filter with generalized coupled-line circuit and analytical theory," Progress In Electromagetics Research, Vol. 116, 553-567, 2011.

2. Li, L., Z.-F. Li, and Q.-F. Wei, "Compact and selective lowpass filter with very wide stopband using tapered compact microstrip resonant cells," Elecron. Lett., Vol. 45, No. 5, 267-268, 2009.

3. Li, J.-L., S.-W. Qu, and Q. Xue, "Compact microstrip lowpass filter with sharp roll-off and wide stop-band," Elecron. Lett., Vol. 45, No. 2, 110-111, 2009.

4. Li, K., M. Zhao, Y. Fan, Z. Zhu, and W. Cui, "Compact lowpass filter with wide stopband using novel double-folded SCMRC structure with parallel open-ended stub," Progress In Electromagnetics Research Letters, Vol. 36, 77-86, 2013.

5. Ka, K. and K. S. Yeo, "New ultra-wide stopband low-pass filter using transformed radial stubs," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 3, 604-611, 2011.

6. Cao, H., W. Guan, S. He, and L. Yang, "Compact lowpass filter with high selectivity using G-shaped defected microstrip structure ," Progress In Electromagnetics Research Letters, Vol. 33, 55-62, 2012.

7. Chen, Q. and J. Xu, "DGS resonator with two transmission zeros and its application to lowpass filter design," Elecron. Lett., Vol. 46, No. 21, 1447-1449, 2010.

8. Al Sharkawy, M. H., D. Abd El-Aziz, and E. Galal, "A miniaturized lowpass/bandpass filter using double arrow head defected ground structure with centered etched ellipse," Progress In Electromagnetics Research Letters, Vol. 24, 99-107, 2011.

9. Wang, C. J. and T. H. Lin, "A multi-band meandered slotted-ground-plane resonator and its application of lowpass filter," Progress In Electromagnetics Research, Vol. 120, 249-262, 2011.

10. Hayati, M., H. A.-D. Memari, and H. Abbasi, "Compact microstrip lowpass filter with sharp roll-off and wide stopband using semicircle stub resonator," Progress In Electromagnetics Research Letters, Vol. 35, 73-81, 2012.

11. Hayati, M., H. Asadbeigi, and A. Sheikhi, "Microstrip lowpass filter with high and wide rejection band," Elecron. Lett., Vol. 48, No. 19, 1217-1219, 2012.

12. Wang, J. P., H. Cui, and G. Zhang, "Design of compact microstrip lowpass filter with ultra-wide stopband," Elecron. Lett., Vol. 48, No. 14, 854-856, 2012.

13. Hong, J. S. and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications,, Wiely, New York, 2001.