1. Kong, J. A., Electromagnetic Wave Theory, 353, EMW Publishing, Cambridge, MA, 2005.
2. Hehl, F. W. and Y. Obukhov, Foundations of Classical Electrodynamics, Birkhäuser, Boston, 2004.
3. Balakin, A. and W. Zimdahl, "Optical metrics and birefringence of anisotropic media," Gen. Relativ. Gravit., Vol. 37, No. 10, 1731-1751, 2005.
doi:10.1007/s10714-005-0155-3 Google Scholar
4. Obukhov, Y., T. Ramos, and G. Rubilar, "Relativistic Lagrangian model of a nematic liquid crystal interacting with an electromagnetic field ," Phys. Rev. E, Vol. 86, 031703, 2012.
doi:10.1103/PhysRevE.86.031703 Google Scholar
5. Lindell, I. V., L. Bergamin, and A. Favaro, "Decomposable medium condition in four-dimensional representation," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 367-376, 2012.
doi:10.1109/TAP.2011.2167937 Google Scholar
6. Dahl, M., "Characterization and representation of non-dissipative electromagnetic medium with two Lorentz null cones," J. Math. Phys., Vol. 54, 011501, 2013.
doi:10.1063/1.4773832 Google Scholar
7. Lämmerzahl, C. and F. W. Hehl, "Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics," Phys. Rev. D, Vol. 70, 105022, 2004.
doi:10.1103/PhysRevD.70.105022 Google Scholar
8. Itin, Y., "Nonbirefringence conditions for spacetime," Phys. Rev. D, Vol. 72, 087502, 2005.
doi:10.1103/PhysRevD.72.087502 Google Scholar
9. Favaro, A. and L. Bergamin, "The non-birefringent limit of all linear skewonless media and its unique light-cone structure," Ann. Phys., Vol. 523, No. 5, 383-401, Berlin, 2011.
doi:10.1002/andp.201000140 Google Scholar
10. Dahl, M., "Determination of an electromagnetic medium from the Fresnel surface ," J. Phys. A: Math. Theor., Vol. 45, 405203, 2012.
doi:10.1088/1751-8113/45/40/405203 Google Scholar
11. Lindell, I. V., "The class of bi-anisotropic IB media," Progress In Electromagnetics Research, Vol. 57, 1-18, 2006.
doi:10.2528/PIER05061302 Google Scholar
12. Lindell, I. V. and A. H. Sihvola, "Uniaxial IB-medium interface and novel boundary conditions," IEEE Trans. Antennas Propag., Vol. 57, No. 3, 694-700, Mar. 2009.
doi:10.1109/TAP.2009.2013431 Google Scholar
13. Lindell, I. V., L. Bergamin, and A. Favaro, "The class of electromagnetic P-media and its generalization," Progress In Electromagnetics Research B, Vol. 28, 143-162, 2011. Google Scholar
14. Favaro, A., Recent advances in electromagnetic theory, Ph.D. Thesis, Imperial College, London, 2012.
15. Lindell, I. V., "On electromagnetic fields in skewon-axion media," ICEAA' 12, 58-61, Cape Town, South Africa, Sep. 2012.
16. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
17. Lindell, I. V., Differential Forms in Electromagnetics, Wiley, New York, 2004.
18. Post, E. J., Formal Structure of Electromagnetics, North-Holland Pub. Co., 1962, Reprinted: Dover, New York, 1997.
19. Lindell, I. V., "Electromagnetic wave equation in differential-form representation," Progress In Electromagnetics Research, Vol. 54, 321-333, 2005.
doi:10.2528/PIER05021002 Google Scholar
20. Obukhov, Y., T. Fukui, and G. Rubilar, "Wave propagation in linear electrodynamics," Phys. Rev. D, Vol. 62, 044050, 2000.
doi:10.1103/PhysRevD.62.044050 Google Scholar
21. Rubilar, G., "Linear pre-metric electrodynamics and deduction of the light cone," Ann. Phys., Vol. 11, No. 10-11, 717-782, Leipzig, 2002.
doi:10.1002/1521-3889(200211)11:10/11<717::AID-ANDP717>3.0.CO;2-6 Google Scholar
22. Itin, Y., "On light propagation in premetric electrodynamics: The covariant dispersion relation," J. Phys. A, Vol. 42, 475402, 2009.
doi:10.1088/1751-8113/42/47/475402 Google Scholar
23. Gibbs, J. W. and E. B. Wilson, Vector Analysis, Charles Scribner's Sons, 1909, Reprinted: Dover, New York, 1960.
24. Lindell, I. V., Methods for Electromagnetic Field Analysis, 2nd Ed., IEEE Press, New York, 1995.
25. Schuller, F., C. Witte, and M. Wohlfarth, "Causal structure and algebraic classification of non-dissipative linear optical media," Ann. Phys., Vol. 325, 1853-1883, NY, 2010. Google Scholar
26. Dahl, M., "A restatement of the normal form theorem for area metrics," Int. J. Geometric Methods in Modern Phys., Vol. 9, No. 5, 1250046, 2012.
doi:10.1142/S0219887812500466 Google Scholar
27. Lindell, I. V., "Inverse for the skewon medium dyadic," Progress In Electromagnetics Research, Vol. 63, 21-32, 2006.
doi:10.2528/PIER06062201 Google Scholar