Vol. 40
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-05-29
A Novel Wideband Bandpass Filter Using Triple-Mode Slotline Ring Resonator
By
Progress In Electromagnetics Research Letters, Vol. 40, 163-170, 2013
Abstract
A novel wideband bandpass filter on a triple-mode slotline ring resonator is proposed in this letter. By attaching two stubs with different lengths and/or widths to the symmetric plane of a slotline ring resonator, the frequencies of first three resonant modes can be rearranged towards quasi-equal separation. By feeding this slotline resonator using the microstrip feed lines at positions with an angle of 90° to the symmetrical plane, these three resonant modes can be simultaneously raised up, aiming to form up a wide passband. Meanwhile, a wide upper-stopband can be realized by setting the lengths of two stubs unequally. After the principle of an initial wideband filter is described, a prototype of compact filter with internally-loaded stubs is designed with fractional bandwidth of 66% at center frequency of 3.0 GHz. Measured results well validate the predicted ones.
Citation
Bo Jiang, Lei Zhu, and Dong Chen, "A Novel Wideband Bandpass Filter Using Triple-Mode Slotline Ring Resonator," Progress In Electromagnetics Research Letters, Vol. 40, 163-170, 2013.
doi:10.2528/PIERL13040104
References

1. Chang, K., Microwave Ring Circuits and Antennas, Wiley, New York, 1996.

2. Wolff, I., "Microstripbandpass filter using degenerate modes of a microstrip ring resonator," Electron. Lett., Vol. 8, No. 12, 302-303, 1972.
doi:10.1049/el:19720223

3. Matsuo, M., H. Yabukiand, and M. Makimoto, "Dual-mode stepped-impedance ring resonator for bandpass filter applications," IEEE Trans. on Microw. Theory and Tech., Vol. 49, No. 7, 1235-1240, 2001.
doi:10.1109/22.932241

4. Gorur, A., "Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 2, 671-677, 2004.
doi:10.1109/TMTT.2003.822033

5. Chen, Z.-X., X.-W. Dai, and C.-H. Liang, "Novel dual-mode dual-band bandpass filter using double square-loop structure," Progress In Electromagnetics Research, Vol. 77, 409-416, 2007.
doi:10.2528/PIER07082803

6. Hong, J. S. and M. J. Lancaster, "Microstrip bandpass filter using degenerate modes of a novel meander loop resonator," IEEE Microw. Guided Wave Lett., Vol. 5, No. 11, 371-372, 1995.
doi:10.1109/75.473539

7. Luo, S., L. Zhu, and S. Sun, "A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes," IEEE Trans. on Microw. Theory and Tech., Vol. 58, No. 12, 3427-3432, 2010.

8. Hsieh, L. H. and K. Chang, "Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters," IEEE Trans. on Microw. Theory and Tech., Vol. 51, No. 4, 1241-1246, 2003.
doi:10.1109/TMTT.2003.809643

9. Ishida, H. and K. Araki, "Design and analysis of UWB bandpass filter with ring filter," IEEE MTT-S Int. Dig., Vol. 3, 1307-1310, 2004.

10. Luo, S. and L. Zhu, "A dual-mode dual-band bandpass filter using a single slot ring resonator," Progress In Electromagnetics Research Letter, Vol. 23, 173-180, 2011.

11. Sun, S. and L. Zhu, "Wideband microstrip ring resonator bandpass filters undermultiple resonances," IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 10, 2176-2182, 2007.
doi:10.1109/TMTT.2007.906510