Vol. 40
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-06-09
Design of Compact Wideband Bandpass Filter with Good Performances Based on Novel CRLH Resonator
By
Progress In Electromagnetics Research Letters, Vol. 40, 201-207, 2013
Abstract
A novel miniaturized composite right/left-handed (CRLH) transmission line based on the structure of spiral inter-digital is proposed and analyzed in this article. Compared with the conventional inter-digital CRLH, the proposed CRLH realizes a 25% resonace frequency shift, and the miniaturization is realized. Then, a compact bandpass filter centered at 1.00 GHz with minimum insertion loss 0.42 dB was designed, fabricated and measured. The measured results show that the band width is 61.6% and that the sharpness at the two edges of passband is 212.5 dB/GHz and 607.1 dB/GHz. This designed filter has very high selectivity. Besides, the whole size of the designed filter is 0.114λ×0.054λ. The filter realizes the miniaturization effectively, and this designed bandpass filter has good performances and smaller size than the same works in references.
Citation
Guo-Cheng Wu, Guangming Wang, and Ya-Wei Wang, "Design of Compact Wideband Bandpass Filter with Good Performances Based on Novel CRLH Resonator," Progress In Electromagnetics Research Letters, Vol. 40, 201-207, 2013.
doi:10.2528/PIERL13050402
References

1. Kuo, J.-T. and C.-Y. Tsai, "Periodic stepped-impedance ring resonator (PSIRR) bandpass filter with a miniaturized area and desirable upper stopband characteristics," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 1107-1112, 2006.
doi:10.1109/TMTT.2005.864121

2. Sanchez-Renedo, M., "High-selectivity tunable planar combline filter with source/load-multiresonator coupling," IEEE Microwave and Wireless Components Letters, Vol. 17, 513-515, 2007.
doi:10.1109/LMWC.2007.899313

3. Zhang, J., B. Cui, S. Lin, and X.-W. Sun, "Sharp-rejection low-pass filter with controllable transmission zero using complementary split ring resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 69, 219-226, 2007.
doi:10.2528/PIER06122103

4. Karimian, S. and Z. R. Hu, "Miniaturized composite right/left-handed stepped-impedance resonator bandpass filter," IEEE Microwave and Wireless Components Letters, Vol. 22, 400-402, 2012.
doi:10.1109/LMWC.2012.2206018

5. Zhang, , S. B., L. Zhu, and R. Li, "Compact quadruplet bandpass filter based on alternative J/K inverters and λ/4 resonators," IEEE Microwave and Wireless Components Letters, Vol. 22, 224-226, 2012.
doi:10.1109/LMWC.2012.2193124

6. Ren, S.-W., H.-L. Peng, J.-F. Mao, and A.-M. Gao, "Compact quasi-elliptic wideband bandpass filter using cross-coupled multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, 397-399, 2012.
doi:10.1109/LMWC.2012.2205230

7. Fan, J., D. Zhan, C. J. Jin, and J. R. Luo, "Wideband microstrip bandpass filter based on quadruple mode ring resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, 348-350, 2012.
doi:10.1109/LMWC.2012.2199977

8. Hashemi, M. R. M. and T. Itoh, "Dual-band composite right/left-handed metamaterial concept," IEEE Microwave and Wireless Components Letters, Vol. 22, 248-250, 2012.
doi:10.1109/LMWC.2012.2191274

9. Wu, G.-C., G.-M. Wang, T. Li, and C. Zhou, "Novel dual-composite right/left-handed transmission line and its application to bandstop filter," Progress In Electromagnetics Research Letters, Vol. 37, 29-35, 2013.

10. Xu, , H.-X., G.-M. Wang, Q. Peng, and J.-G. Liang, "Novel design of tri-band bandpass filter based on fractal-shaped geometry of a complementary single split ring resonator," International Journal of Electronics, Vol. 98, 647-654, 2011.
doi:10.1080/00207217.2011.593141

11. Zhang, Q. L., W. Y. Yin, S. He, and L. S.Wu, "Compact substrate integrated waveguide (SIW) bandpass filter with complementary split ring resonators (CSRRs)," IEEE Microwave and Wireless Components Letters, Vol. 20, 426-428, 2010.
doi:10.1109/LMWC.2010.2049258

12. Zeng, H.-Y., G.-M. Wang, C.-X. Zhang, and L. Zhu, "Compact microstrip low-pass filter using complementary split ring resonators with ultra-wide stopband and high selectivity," Microwave and Optical Technology Letters, Vol. 52, No. 2, 430-433, 2010.
doi:10.1002/mop.24942

13. Wu, G.-C., G.-M. Wang, L.-Z. Hu, Y.-W. Wang, and C. Liu, "A miniaturized triple-band branch-line coupler based on simplified dual-composite right/left-handed transmission line," Progress In Electromagnetics Research C, Vol. 39, 1-10, 2013.

14. Xu, H.-X., G.-M. Wang, and M.-Q. Qi, "A miniaturized triple-band metamaterial antenna with dadiation pattern selectivity and polarization diversity," Progress In Electromagnetics Research, Vol. 13, 275-292, 2013.