1. Iddan, G., G. Moron, A. Glukhovsky, and P. Swain, "Wireless capsule endoscopy," Nature, Vol. 405, 417, May 2000.
doi:10.1038/35013140 Google Scholar
2. Basar, M. R., F. Malek, K. M. Juni, M. S. Idris, and M. I. M. Saleh, "Ingestible wireless capsule technology: A review of development and future indication," International Journal of Antenna and Propagation, Vol. 2012, 1-14, 2012.
doi:10.1155/2012/807165 Google Scholar
3. Pan, G. and L. Wang, "Swallowable wireless capsule endoscopy: Progress and technical challenges," Gastroenterology Research and Practice, Vol. 2012, 1-9, 2011.
doi:10.1155/2012/841691 Google Scholar
4. Ciuti, G., A. Menciassi, and P. Dario, "Capsule endoscopy: From current achievements to open challenges," IEEE Reviews in Biomedical Engineering, Vol. 4, 59-72, 2011.
doi:10.1109/RBME.2011.2171182 Google Scholar
5. Chi, B., J. Yao, S. Han, X. Xie, G. Li, and Z. Wang, "Low power high data rate wireless endoscopy transceiver," Microelectronics Journal, Vol. 38, 1070-1081, 2007.
doi:10.1016/j.mejo.2007.07.118 Google Scholar
6. Thoné, J., S. Radiom, D. Turgis, R. Carta, G. Gielen, and R. Puers, "Design of a 2 Mbps FSK near-field transmitter for wireless capsule endoscopy," Sensors and Actuators A: Physical, Vol. 156, 43-48, 2009.
doi:10.1016/j.sna.2008.11.027 Google Scholar
7. Diao, S., Y. Zheng, and C. Heng, "A CMOS ultra low-power and highly e±cient UWB-IR transmitter for WPAN applications," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 56, 200-204, 2009.
doi:10.1109/TCSII.2009.2015369 Google Scholar
8. Gao, Y., Y. Zheng, S. Diao, W. Toh, C. Ang, M. Je, and C. Heng, "Low-power ultrawideband wireless telemetry transceiver for medical sensor applications," IEEE Transactions on Biomedical Engineering, Vol. 58, 768-772, 2011.
doi:10.1109/TBME.2011.2164248 Google Scholar
9. Wong, S.-K., F. Kung, S. Maisurah, and M. N. B. Osman, "A WiMedia compliant CMOS RF power amplifier for ultra-wideband (UWB) transmitter," Progress In Electromagnetics Research, Vol. 112, 329-347, 2011. Google Scholar
10. Basar, M. R., F. Malek, K. M. Juni, M. I. M. Saleh, M. S. Idris, L. Mohamed, N. Saudin, N. A. Mohd Affendi, and A. Ali, "The use of a human body model to determine the variation of path losses in the human body channel in wireless capsule endoscopy," Progress In Electromagnetics Research, Vol. 133, 495-513, 2013. Google Scholar
11. Theilmann, P., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally efficient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012. Google Scholar
12. Kim, K., S. Yun, S. Lee, S. Nam, Y. Yoon, and C. Cheon, "A design of a high-speed and high-e±ciency capsule endoscopy system," IEEE Transactions on Biomedical Engineering, Vol. 59, 1005-1011, Apr. 2012.
doi:10.1109/TBME.2011.2182050 Google Scholar
13. Woo, S. H., K. W. Yoon, Y. K. Moon, J. H. Lee, H. J. Park, T. W. Kim, et al. "High speed receiver for capsule endoscope," Journal of Medical Systems, Vol. 34, 843-847, 2010.
doi:10.1007/s10916-009-9298-1 Google Scholar
14. Basar, M. R., M. F. B. A. Malek, M. I. M. Saleh, M. S. Idris, K. M. Juni, A. Ali, N. A. Mohd Affendi, and N. Hussin, "A novel, high-speed image transmitter for wireless capsule endoscopy," Progress In Electromagnetics Research, Vol. 137, 129-147, 2013. Google Scholar
15. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
16. Chen, Z. and Y. P. Zhang, "Effects of antennas and propagation channels on synchronization performance of a pulse-based ultra-wideband radio system," Progress In Electromagnetics Research, Vol. 115, 95-112, 2011. Google Scholar
17. Gjonaj, E., M. Bartsch, M. Clemens, S. Schupp, and T. Weiland, "High-resolution human anatomy models for advanced electromagnetic field computations," IEEE Transactions on Magnetics, Vol. 38, No. 2, 357-360, Mar. 2002.
doi:10.1109/20.996096 Google Scholar
18. Carlson, B., B. C. Paul, and C. R. Janet, Communication Systems --- An Introduction to Signals and Noise in Electrical Communications, 4th Ed., McGraw-Hill, 2001.
19. Carmo, J. P. and J. H. Correia, "RF CMOS transceiver at 2.4 GHz in wearables for measuring the cardio-respiratory function," Measurement, Vol. 44, 65-73, 2011.
doi:10.1016/j.measurement.2010.09.027 Google Scholar
20. Ellinger, F., Radio Frequency Integrated Circuits and Technologies, Springer-Verlag, Berlin, Heidelberg, 2007.
21. Shaeffer, D. and T. Lee, "A 1.5 V, 1.5 GHz CMOS low-noise amplifier," IEEE Journal of Solid-State Circuits, Vol. 39, 569-576, 2004. Google Scholar
22. Doh, H., Y. Jeong, S. Jung, and Y. Joo, "Design of CMOS UWB low noise amplifier with cascade feedback," The 7th IEEE International Midwest Symposium on Circuits and Systems, 641-644, 2004.
23. Rubin, S. N., "A wideband UHF logarithmic amplifier," IEEE Journal of Solid-State Circuits, Vol. 2, 74-81, 1966.
doi:10.1109/JSSC.1966.1049762 Google Scholar
24. Barber, W. L. and E. R. Brown, "A true logarithmic amplifier for radar IF applications," IEEE Journal of Solid-State Circuits, Vol. 15, 291-295, 1980.
doi:10.1109/JSSC.1980.1051386 Google Scholar