1. Stillinger, F. H., "Axiomatic basis for spaces with noninteger dimension," Journal of Mathematical Physics, Vol. 18, No. 6, 1224-1234, 1977.
doi:10.1063/1.523395 Google Scholar
2. Sadallah, M. and S. I. Muslih, "Solution of the equations of motion for Einstein's field in fractional D dimensional space-time ," International Journal of Theoretical Physics, Vol. 48, No. 12, 3312-3318, 2009.
doi:10.1007/s10773-009-0133-8 Google Scholar
3. Muslih, S. I. and O. P. Agrawal, "A scaling method and its applications to problems in fractional dimensional space," Journal of Mathematical Physics, Vol. 50, No. 12, 123501-1-123501-11, 2009.
doi:10.1063/1.3263940 Google Scholar
4. Mandelbrot, B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.
5. Palmer, C. and P. N. Stavrinou, "Equations of motion in a noninteger-dimension space," J. Phys. A, Vol. 37, 6987-7003, 2004.
doi:10.1088/0305-4470/37/27/009 Google Scholar
6. Tarasov, V. E., "Electromagnetic fields on fractals," Modern Phys. Lett. A, Vol. 21, No. 20, 1587-1600, 2006.
doi:10.1142/S0217732306020974 Google Scholar
7. Ashmore, J. F., "On renormalization and complex space-time dimensions," Commun. Math. Phys., Vol. 29, 177-187, 1973.
doi:10.1007/BF01645246 Google Scholar
8. Tarasov, V. E., "Continuous medium model for fractal media," Physics Letters A, Vol. 336, No. 2-3, 167-174, 2005.
doi:10.1016/j.physleta.2005.01.024 Google Scholar
9. Muslih, S. I. and D. Baleanu, "Fractional multipoles in fractional space," Nonlinear Analysis: Real World Applications, Vol. 8, 198-203, 2007.
doi:10.1016/j.nonrwa.2005.07.001 Google Scholar
10. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Analysis: Real World Applications, Vol. 11, No. 1, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058 Google Scholar
11. Ostoja-Starzewski, M., "Electromagnetism on anisotropic fractal media," ZAMP, Vol. 64, No. 2, 381-390, 2013.
doi:10.1007/s00033-012-0230-z Google Scholar
12. Zubair, M., M. J. Mughal, Q. A. Naqvi, and A. A. Rizvi, "Differential electromagnetic equations in fractional space," Progress In Electromagnetic Research, Vol. 114, 255-269, 2011. Google Scholar
13. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "On electromagnetic wave propagation in fractional space," Nonlinear Analysis B: Real World Applications, Vol. 12, No. 5, 2844-2850, 2011.
doi:10.1016/j.nonrwa.2011.04.010 Google Scholar
14. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solutions in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010. Google Scholar
15. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of the cylindrical wave equation for electromagnetic field n fractional dimensional space," Progress In Electromagnetics Research, Vol. 114, 443-455, 2011. Google Scholar
16. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of spherical wave in D-dimensional fractional space," Journal of Electromagnetic Waves and Applications,, Vol. 25, No. 10, 1481-1491, 2011. Google Scholar
17. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "Electromagnetic fields and waves in fractional dimensional space," Springer Brifes in Applied Sciences and Technology, XII, 76, Springer, Germany, Jan. 28, 2012. Google Scholar
18. Attiya, A. M., "Reflection and transmission of electromagnetic wave due to a quasi-fractional space slab," Progress In Electromagnetics Research Letters, Vol. 24, 119-128, 2011. Google Scholar
19. Asad, H., M. Zubair, and M. J. Mughal, "Reflection and transmission at dielectric-fractal interface," Progress In Electromagnetics Research, Vol. 125, 543-558, 2012.
doi:10.2528/PIER12012402 Google Scholar
20. Mughal, M. J. and M. Zubair, "Fractional space solutions of antenna radiation problems: An application to hertzain dipole," IEEE 19th Conference on Signal Processing and Communications Applications (SIU), 62-65, Apr. 20-22, 2011, doi: 10.1109/SIU.2011.5929587. Google Scholar
21. Teng, H. T., H.-T. Ewe, and S. L. Tan, "Multifractal dimension and its geometrical terrain properties for classification of multi-band multi-polarised SAR image," Progress In Electromagnetics Research, Vol. 104, 221-237, 2010.
doi:10.2528/PIER10022001 Google Scholar
22. Anguera, J., J. P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, K. Sayegrih, and P. Van Roy, "Metallized foams for antenna design: Application to fractal-shaped sierpinski-carpet monopole," Progress In Electromagnetics Research, Vol. 104, 239-251, 2010.
doi:10.2528/PIER10032003 Google Scholar
23. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring Sierpinski carpet arrays optimized by genetic algorithms," Progress In Electromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110 Google Scholar
24. Karim, M. N. A., M. K. A. Rahim, H. A. Majid, O. B. Ayop, M. Abu, and F. Zubir, "Log periodic fractal koch antenna for UHF band applications," Progress In Electromagnetics Research, Vol. 100, 201-218, 2010.
doi:10.2528/PIER09110512 Google Scholar
25. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.
26. Omar, M. and M. J. Mughal, "Behavior of electromagnetic waves at dielectric fractal-fractal interface in fractional spaces," Progress In Electromagnetics Research, Vol. 28, 229-244, 2013. Google Scholar
27. Asad, H., M. Zubair, M. J. Mughal, and Q. A. Naqvi, "Electromagnetic green functions for fractional space," Journal of Electromagnetic Wave and Application,, Vol. 26, No. 14-15, 1903-1910, 2012.
doi:10.1080/09205071.2012.720748 Google Scholar
28. Balankin, S. A., et al. "Electromagnetic fields in fractal continua," Physics Letters A, Vol. 377, 783-788, 2013.
doi:10.1016/j.physleta.2013.01.030 Google Scholar