1. Roy, J. N., "Mach-Zehnder interferometer-based tree architecture for all-optical logic and arithmetic operations," Optik, Vol. 120, 318-324, 2009.
doi:10.1016/j.ijleo.2007.09.004 Google Scholar
2. Garg, A. K. and R. S. Kaler, "Novel optical burst switching architecture for high speed networks," Chinese Optics Letters, Vol. 6, No. 11, 807-811, 2008.
doi:10.3788/COL20080611.0807 Google Scholar
3. Stubkjaer, K. E., "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Topics Quantum Electron., Vol. 6, 1428-1435, 2000.
doi:10.1109/2944.902198 Google Scholar
4. Scaffardi, M., P. Ghel¯, E. Lazzeri, L. Poti, and A. Bogoni, "Photonic processing for digital comparison and full addition based on semiconductor optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 14, No. 3, 826-832, 2008.
doi:10.1109/JSTQE.2008.918652 Google Scholar
5. Wang, Q., G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, "Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme," IEEE Journal of Quantum Electronics, Vol. 40, No. 6, 703-710, Jun. 2004.
doi:10.1109/JQE.2004.828261 Google Scholar
6. Clavero, R., F. Ramos, J. M. Martinez, and J. Marti, "All-optical flip-flop based on a single SOA-MZI," IEEE Photonics Technology Letters, Vol. 17, No. 4, 843-845, 2005.
doi:10.1109/LPT.2004.842797 Google Scholar
7. Kim, J. Y., J. M. Kang, T. Y. Kim, and S. K. Han, "10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures," Electron. Lett., Vol. 42, 303, 2006.
doi:10.1049/el:20063501 Google Scholar
8. Ye, X., P. Ye, and M. Zhang, "All-optical NAND gate using integrated SOA-based Mach-Zehnder interferometer," Opt. Fiber Technol., Vol. 12, 312-316, 2006.
doi:10.1016/j.yofte.2005.12.001 Google Scholar
9. Minh, H. L., F. Z. Ghassemlooy, and W. P. Ng, "All-optical flip-flop based on a symmetric Mach-Zehnder switch with a feedback loop and multiple forward set/reset signals," Opt. Eng., Vol. 46, No. 4, 40501-03, 2007.
doi:10.1117/1.2721773 Google Scholar
10. Hong, W., D. Huang, and G. Zhu, "Switching window of an SOA loop mirror with SOA sped-up by a CW assist light at transparency wavelength," Opt. Commun., Vol. 238, No. 1-3, 151-156, 2004.
doi:10.1016/j.optcom.2004.04.037 Google Scholar
11. Roy, J. N. and D. K. Gayen, "Integrated all-optical logic and arithmetic operations with the help of TOAD based interferometer device-alternative approach," Appl. Opt., Vol. 46, No. 22, 5304-5310, 2007.
doi:10.1364/AO.46.005304 Google Scholar
12. Li, D., X. Zhang, and D. Huang, "Novel all-optical format conversion using an ultrafast nonlinear interferometer at 10-40 Gbit/s," Microw. Opt. Technol. Lett., Vol. 49, No. 3, 508-510, 2007.
doi:10.1002/mop.22183 Google Scholar
13. Zoiros, K. E., P. Avramidis, and C. S. Koukourlis, "Performance investigation of semiconductor optical amplifier based ultrafast nonlinear interferometer in nontrivial switching mode," Opt. Eng., Vol. 47, No. 11, 115006-11, 2008.
doi:10.1117/1.3028348 Google Scholar
14. Han, L., H. Wen, H. Zhang, and Y. Guo, "All-optical wavelength conversion for polarization shift keying signal based on four-wave mixing in a semiconductor optical amplifier," Opt. Eng., Vol. 46, No. 9, 090501-3, 2007.
doi:10.1117/1.2775936 Google Scholar
15. Chen, Z., "Simple novel all-optical half adder," Opt. Eng., Vol. 49, No. 4, 043201-6, 2010. Google Scholar
16. Tsiokos, D., E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, "10-Gb/s all-optical half adder with interferometric SOA gates," IEEE Photon. Technol. Lett., Vol. 16, No. 3, 284-286, Mar. 2004.
doi:10.1109/LPT.2003.819394 Google Scholar
17. Li, P.-L., D.-X. Huang, X.-L. Zhang, and G.-X. Zhu, "Ultrahigh speed all-optical half adder based on four-wave mixing in semiconductor optical amplifier," Optics Express, Vol. 14, No. 24, 11839-11847, 2006.
doi:10.1364/OE.14.011839 Google Scholar
18. Phongsanam, P., S. Mitatha, C. Teeka, and P. P. Yupapin, "All optical half adder/subtractor using dark-bright soliton conversion control," Microw. Opt. Technol. Lett., Vol. 53, No. 7, 1541-1544, 2011.
doi:10.1002/mop.26039 Google Scholar
19. Menezes, J. W. M., W. B. Fraga, A. C. Ferreira, G. F. Guimaraes, A. F. G. F. Filho, C. S. Sobrinho, and A. S. B. Sombra, "All-optical half adder using all-optical XOR and AND gates for optical generation of ``Sum" and ``Carry"," Fiber Integr. Opt., Vol. 29, No. 4, 254-271, 2010.
doi:10.1080/01468030.2010.485290 Google Scholar
20. Nakamura, S., Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, "Demultiplexing of 168-Gb/s data pulseswith a hybrid-integrated symmetric Mach-Zehnder all-optical switch," IEEE Photon. Technol. Lett., Vol. 12, No. 5, 425-427, May 2000.
doi:10.1109/68.839040 Google Scholar
21. Kim, J. Y., J. Y., J. M. Kang, T. Y. Kim, and S. K. Han, "All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: Theory and experiment," J. Lightw. Technol., Vol. 24, No. 9, 3392-3399, Sep. 2006.
doi:10.1109/JLT.2006.880593 Google Scholar
22. Berg, T. W. and J. Mork, "Saturation and noise properties of quantum-dot optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 40, No. 11, 1527-1539, Nov. 2004.
doi:10.1109/JQE.2004.835114 Google Scholar
23. Li, X. and G. Li, "Comments on `Theoretical analysis of gain recovery time and chirp in QD-SOA'," IEEE Photon. Technol. Lett., Vol. 18, No. 22, 2434-2435, Nov. 2006. Google Scholar
24. Ben-Ezra, Y., B. I. Lembrikov, and M. Haridim, "Acceleration of gain recovery and dynamics of electrons in QD-SOA," IEEE Journal of Quantum Electronics, Vol. 41, No. 10, 1268-1273, 2005.
doi:10.1109/JQE.2005.854131 Google Scholar
25. Ben-Ezra, Y., M. Haridim, and B. I. Lembrikov, "Theoritical analysis of gain-recovery time and chirp in QD-SOA," IEEE Photon. Technol. Lett., Vol. 17, No. 9, 1803-1805, Sep. 2005.
doi:10.1109/LPT.2005.853030 Google Scholar
26. Rostami, A., H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, "Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 46, No. 3, 354-360, Mar. 2010.
doi:10.1109/JQE.2009.2033253 Google Scholar
27. Ben-Ezra, Y., B. I. Lembrikov, and M. Haridim, "Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 45, No. 1, 34-41, Jan. 2009.
doi:10.1109/JQE.2008.2003497 Google Scholar
28. Dimitriadou, E. and K. E. Zoiros, "On the feasibility of ultrafast all-optical NAND gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer ," Opt. Laser Technol., Vol. 44, No. 6, 1971-1981, 2012.
doi:10.1016/j.optlastec.2012.02.022 Google Scholar
29. Dimitriadou, E. and K. E. Zoiros, "Proposal for all-optical NOR gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Opt. Commun., Vol. 285, 1710-1716, 2012.
doi:10.1016/j.optcom.2011.11.122 Google Scholar
30. Dimitriadou, E. and K. E. Zoiros, "On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Opt. Laser Technol., Vol. 44, 600-607, 2012.
doi:10.1016/j.optlastec.2011.08.028 Google Scholar
31. Han, H., M. Zhang, P. Ye, and F. Zhang, "Parameter design and performance analysis of an ultrafast all-optical XOR gate based on quantum-dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer," Opt. Commun., Vol. 281, 5140-5145, 2008.
doi:10.1016/j.optcom.2008.07.020 Google Scholar
32. Rostami, A., H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, "Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 46, No. 3, 354-360, Mar. 2010.
doi:10.1109/JQE.2009.2033253 Google Scholar
33. Morris Mano, M., Digital Logic and Computer Design, 119-123, Prentice-Hall, 1979, ISBN 0-13-21450-3.
34. Dimitriadou, E. and K. E. Zoiros, "On the feasibility of 320 Gb/s all-optical and gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Progress In Electromagnetics Research B, Vol. 50, 113-140, 2013. Google Scholar
35. Rostami, A. and H. Baghban, Nanostructure Semiconductor Optical Amplifiers: Building Blocks for All-optical Processing, Springer, 2011.
36. Agrawal, G. P., Fiber-optic Communication Systems, Wiley, New York, 2002.
37. Yang, W., M. Zhang, and P. Ye, "Analysis of all-optical demultiplexing from 160/320 Gbit/s to 40 Gbit/s using quantum-dot semiconductor optical amplifiers assisted Mach-Zehnder interferometer," Microw. Opt. Technol. Lett., Vol. 52, 1629-1633, 2010.
doi:10.1002/mop.25287 Google Scholar
38. Pina, J. F., H. J. A. da Silva, P. N. Monteiro, J. Wang, W. Freude, and J. Leuthold, "Cross-gain modulation-based 2R regenerator using quantum-dot semiconductor optical amplifiers at 160 Gbit/s," Proc. Conf. ICTON, Vol. 1, 106-109, TuA1, 2007.
39. Wang, Q., G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, "Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme," IEEE Journal of Quantum Electronics, Vol. 40, No. 6, 703-710, Jun. 2004.
doi:10.1109/JQE.2004.828261 Google Scholar
40. Nakahara, T. and R. Takahashi, "Self-stabilizing optical clock pulse-train generator using SOA and saturable absorber for asynchronous optical packet processing," Optics Express, Vol. 21, No. 9, 10712-10719, 2013.
doi:10.1364/OE.21.010712 Google Scholar