1. Dell, J., "The maritime market: VSAT rules," SatMagazine, 30-34, Dec. 2008, available on-line: www.satmagazine.com. Google Scholar
2. Adrian, A. and D. H. Schaubert, "Dual aperture-coupled microstrip antenna for dual or circular polarization," Electronics Letters, Vol. 23, No. 23, 1226-1228, 1987.
doi:10.1049/el:19870854 Google Scholar
3. Targonski, S. D. and D. M. Pozar, "Design of wideband circularly polarized aperture-coupled microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 2, 214-220, 1993.
doi:10.1109/8.214613 Google Scholar
4. Huang, J., "A technique for an array to generate circular polarization with linearly polarized elements," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 9, 1113-1124, Sep. 1986.
doi:10.1109/TAP.1986.1143953 Google Scholar
5. Hall, P. S., J. Huang, E. Rammos, and A. Roederer, "Gain of circularly polarized arrays composed of linearly polarized elements," Electronics Letters, Vol. 25, No. 2, 124-125, 1989.
doi:10.1049/el:19890091 Google Scholar
6. Smolders, A. B. and U. Johannsen, "Axial ratio enhancement for circularly-polarized millimeter-wave phased-arrays using a sequential rotation technique," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3465-3469, 2011.
doi:10.1109/TAP.2011.2161443 Google Scholar
7. Baggen, L., S. Holzwarth, W. Simon, and O. Litschke, "Phased array using the sequential rotation principle: Analysis of coupling effects," IEEE International Symposium on Phased Array Systems and Technology, 571-576, Oct. 14-17, 2003. Google Scholar
8. Pawlak, H. and A. F. Jacob, "An external calibration scheme for DBF antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 1, 59-67, Jan. 2010.
doi:10.1109/TAP.2009.2036195 Google Scholar
9. Smolders, A. B., R. M. C. Mestrom, A. C. F. Reniers, and M. Geurts, "A shared aperture dual-frequency circularly polarized microstrip array antenna," IEEE Antennas and Wireless Technology Letters (AWPL), Vol. 12, 120-123, 2013.
doi:10.1109/LAWP.2013.2242427 Google Scholar
10. Llombart, N., A. Neto, G. Gerini, and P. de Maagt, "Planar circularly symmetric EBG structures for reducing surface waves in antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3210-3218, 2005.
doi:10.1109/TAP.2005.856365 Google Scholar
11. Bolt, R. J., D. J. Bekers, N. Llombart, A. Neto, and G. Gerini, "Application of EBG structures at sub-array level," Proc. of the 36th European Microwave Conference, 1052-1055, Sep. 2006. Google Scholar
12. Rahman, M. and M. A. Stuchly, "Circularly polarised patch antenna with periodic structure," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 149, No. 3, 141-146, 2002.
doi:10.1049/ip-map:20020392 Google Scholar
13. Zheng, B. and Z. Shen, "Effect of a finite ground plane on circularly polarized microstrip antennas," IEEE International Symposium on Antennas and Propagation, Vol. 2A, 238-241, Jul. 3-8, 2005. Google Scholar
14. Das, N. K. and A. Mohanty, "Infinite array of printed dipoles integrated with a printed strip grating for suppression of cross-polar radiation. I. Rigorous analysis," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 6, 960-972, 1997.
doi:10.1109/8.585743 Google Scholar
15. Sigelmann, R. A. and A. Ishimaru, "Radiation from periodic structures excited by an aperiodic source," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 3, 354-364, 1965.
doi:10.1109/TAP.1965.1138437 Google Scholar
16. Sigelmann, R. A., "Surface waves on a grounded dielectric slab covered by a periodically slotted conducting plane," IEEE Transactions on Antennas and Propagation, Vol. 15, No. 5, 672-676, 1967.
doi:10.1109/TAP.1967.1139010 Google Scholar
17. Bellamine, F. H. and E. F. Kuester, "Guided waves along a metal grating on the surface of a grounded dielectric slab," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 7, 1190-1197, 1994.
doi:10.1109/22.299756 Google Scholar
18. Kaganovsky, Y. and R. Shavit, "Analysis of radiation from a line source in a grounded dielectric slab covered by a metal strip grating," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1, 135-143, 2009.
doi:10.1109/TAP.2008.2009667 Google Scholar
19. Jacobsen, J., "Analytical, numerical, and experimental investigation of guided waves on a periodically strip-loaded dielectric slab," IEEE Transactions on Antennas and Propagation, Vol. 18, No. 3, 379-388, 1970.
doi:10.1109/TAP.1970.1139696 Google Scholar
20. Maci, S., M. Casaletti, M. Caiazzo, and A. Cucini, "Dispersion analysis of printed periodic structures by using a pole-zero network synthesis," 17th International Conference on Applied Electromagnetics and Communications, ICECom 2003, 300-303, 2003.
doi:10.1109/ICECOM.2003.1291013 Google Scholar
21. Guglielmi, M. and H. Hochstadt, "Multimode network description of a planar periodic metal-strip grating at a dielectric interface.III. Rigorous solution ," IEEE Transactions on Microwave Theory nd Techniques, Vol. 37, No. 5, 902-909, 1989.
doi:10.1109/22.17458 Google Scholar
22. Sande, H. V., H. de Gersem, F. Henrotte, and K. Hameyer, "Solving nonlinear magnetic problems using Newton trust region methods," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 3, 1709-1712, 2003. Google Scholar
23. Hirtenfelder, F. and G. Lubkowski, "3D field simulations using FI time domain technique of wedge- and parabolic-shaped left handed materials (LHM)," International Workshop on Antenna Technology (IWAT), 259-262, 2007. Google Scholar