Vol. 45
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-02-01
Differential Fed Ultra-Wideband Multiple-Mode Antenna Using Uniform Narrow Slot Radiator
By
Progress In Electromagnetics Research Letters, Vol. 45, 1-6, 2014
Abstract
A new ultra-wideband antenna based on a uniform narrow slot is proposed. The slot radiator is fed by a pair of differential microstrip-lines, to implement a balanced and vialess antenna. The multiple-mode resonances of the radiator are excited simultaneously to form an ultra-wideband radiation, by optimizing antenna dimensions and port impedance. Comparing with other ultra-wideband slot antennas, this antenna has improved radiation patterns and low cross polarization due to its symmetry in structure. Antenna samples are designed and fabricated for verification. The measured impedance bandwidth has successfully achieved a fractional bandwidth of 106% (VSWR < 2.5). The radiation patterns are also measured and agree well with the prediction.
Citation
Xiu-Hua Jin, Xiao-Dong Huang, and Chong-Hu Cheng, "Differential Fed Ultra-Wideband Multiple-Mode Antenna Using Uniform Narrow Slot Radiator," Progress In Electromagnetics Research Letters, Vol. 45, 1-6, 2014.
doi:10.2528/PIERL13121702
References

1. Kraus, J. D. and R. J. Marhefka, Antennas for All Applications, McGraw-Hill, New York, 2002.

2. Wong, S. W., T. G. Huang, C. X. Mao, Z. N. Chen, and Q. X. Chu, "Planar filtering ultra-wideband (UWB) antenna with shorting pins," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 948-953, 2013.
doi:10.1109/TAP.2012.2223438

3. Azim, R., M. T. Islam, and N. Misran, "Compact tapered-shape slot antenna for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1190-1193, 2011.
doi:10.1109/LAWP.2011.2172181

4. Srifi, M. N., S. K. Podilchak, M. Essaaidi, and Y. M. M. Antar, "Compact disc monopole antennas for current and future ultra-wideband (UWB) application," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4470-4480, 2011.
doi:10.1109/TAP.2011.2165503

5. Sze, J. Y. and K. L. Wong, "Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 7, 1020-1024, 2001.
doi:10.1109/8.933480

6. Huang, X. D., C. H. Cheng, and L. Zhu, "Wideband antenna using a multiple-mode slotline radiator: Proposal and implementation," IET Microwaves, Antennas and Propagation, Vol. 5, No. 14, 1773-1778, 2011.
doi:10.1049/iet-map.2010.0582

7. Huang, X. D., C. H. Cheng, and L. Zhu, "An ultra-wideband (UWB) slotline antenna under multiple-mode resonance," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 385-389, 2012.
doi:10.1109/TAP.2011.2167899

8. Behdad, N. and K. Sarabandi, "A multiresonant single-element wideband slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 5-8, 2004.
doi:10.1109/LAWP.2004.825093

9. Behdad, N. and K. Sarabandi, "A wide-band antenna design employing a fictitious short circuit concept," IEEE Antennas and Wireless Propagation Letters, Vol. 53, 475-482, 2005.

10. Zhu, L., R. Fu, and K. L. Wu, "A novel broadband microstrip-fed wide slot antenna with double rejection zeros," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 194-196, 2003.
doi:10.1109/LAWP.2003.819689

11. Himdi, M. and J. P. Daniel, "Analysis of printed linear slot antenna using lossy transmission line model," Electronics Letters, Vol. 28, No. 6, 598-601, 1992.
doi:10.1049/el:19920377

12. Zhu, L. and K. Wu, "Complete circuit model of microstrip-fed slot radiator: Theory and experiments," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 8, 305-307, 1999.
doi:10.1109/75.779910

13. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd Ed., Artech House, Norwod, NJ, 1996.

14. Li, M. J. and K. M. Luk, "A differential-fed magneto-electric dipole antenna for UWB application," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 92-99, 2013.
doi:10.1109/TAP.2012.2220100