Vol. 35
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-02-21
Efficient Multi-Objective Optimization of Frequency Selective Radome with Nonuniform Wall Thickness
By
Progress In Electromagnetics Research M, Vol. 35, 39-48, 2014
Abstract
An efficient optimization technique for frequency selective surface (FSS) radome with nonuniform wall thickness is proposed to improve the power transmission efficiency and the boresight error (BSE) of FSS radome simultaneously. The high-frequency method based on the approximate locally planar technique is used to evaluate the transmission performance of FSS radome. An efficient multi-dimensional adaptive sampling method combined with spectral domain method of moment (MoM) is employed to analyze transmission performance of FSS structure. The immune clone algorithm (ICA) is applied to the design of a FSS radome, in which the linear combination of the maximizing power transmission efficiency and the minimizing BSE is adopted as the affinity function, and the radome wall thickness is optimized. A design example for the three-dimensional tangent ogive radome with nonuniform thickness is given. The results show that the power transmission efficiency is improved significantly and the BSE of the optimal antenna-radome system is also reduced over the antenna scan volume.
Citation
Xin Ma, and Guobin Wan, "Efficient Multi-Objective Optimization of Frequency Selective Radome with Nonuniform Wall Thickness," Progress In Electromagnetics Research M, Vol. 35, 39-48, 2014.
doi:10.2528/PIERM13122503
References

1. Callaghan, P., E. A. Parker, and R. J. Langley, "Influence of supporting dielectric layers on the transmission properties of frequency selective surfaces," IEE Proceedings --- H, Vol. 138, 448-454, 1991.

2. Ohira, M., H. Deguchi, M. Tsuji, et al. "Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique," IEEE Trans. Antennas Propag., Vol. 52, 2925-2931, 2004.
doi:10.1109/TAP.2004.835289

3. Chakravarty, S. and R. Mittra, "Application of the microgenetic algorithm to the design of spatial ¯lters with frequency selective surfaces embedded in dielectric media," IEEE Trans. on Electromagn. Compat., Vol. 44, 338-346, 2002.
doi:10.1109/TEMC.2002.1003399

4. Ling, L., D. H. Werner, J. A. Bossard, and T. S. Mayer, "A model-based parameter estimation technique for wide-band interpolation of periodic moment method impedance matrices with application to genetic algorithm optimization of frequency selective surfaces," IEEE Trans. on Antennas Propag., Vol. 54, 908-924, 2006.
doi:10.1109/TAP.2006.869915

5. Genovesi, S., R. Mittra, A. Monorchio, and G. Manara, "Particle swarm optimization for the design of frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 277-279, 2006.
doi:10.1109/LAWP.2006.875900

6. Sabielny, M., "Design of frequency selective radomes using parallel particle swarm optimization," First European Conference on Antennas and Propagation, 1-6, 2006.

7. Hart, E. and J. Timmis, "Application areas of AIS: The past, the present and the future," Appl. Soft Comput., Vol. 8, 191-201, 2008.
doi:10.1016/j.asoc.2006.12.004

8. Campelo, F., F. G. Guimaraes, H. Igarashi, and J. A. Ramirez, "A clone selection algorithm for optimization in electromagnetics," IEEE Trans. on Magnetics, Vol. 41, 1736-1739, 2005.
doi:10.1109/TMAG.2005.846043

9. Zikri, B., A. B. Jeremy, X. D. Wang, and H. W. Douglas, "A real-valued parallel clonal selection algorithm and its application to the design optimization of multi-layered frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 60, 1831-1843, 2012.
doi:10.1109/TAP.2012.2186241

10. Caroglanian, A. and K. J. Webb, "Study of curved and planar frequency-selective surfaces with nonplanar illumination," IEEE Trans. Antennas Propag., Vol. 39, 211-217, 1991.
doi:10.1109/8.68184

11. Martini, E., F. Caminita, M. Nannetti, et al. "Fast analysis of FSS radome for antenna RCS reduction," IEEE Antennas and Propagation Society International Symposium, 1801-1804, 2006.
doi:10.1109/APS.2006.1710917

12. Philips, B., E. A. Parker, and R. J. Langley, "Ray tracing analysis of the transmission performance of curved FSS," IEE Proc. Microw. Antennas Propag., Vol. 142, 193-200, 1995.
doi:10.1049/ip-map:19951896

13. D'Elia, U., G. Pelosi, C. Pichot, S. Selleri, and M. Zoppi, "A physical optics approach to the analysis of large frequency selective radomes," Progress In Electromagnetic Research, Vol. 138, 537-553, 2013.
doi:10.2528/PIER13012810

14. Ma, X., G. B. Wan, and W. Wan, "A multi-dimensional adaptive sampling method for analysis and design of frequency selective surface with arbitrary element," Progress In Electromagnetic Research B, Vol. 41, 213-230, 2012.
doi:10.2528/PIERB12042004

15. Kozakoff, D. J., Analysis of Radome-enclosed Antennas, Artech House, Boston, London, 2010.

16. Wu, T. K., Frequency Selective Surface and Grid Array, John Wiley & Sons, New York, 1995.

17. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surface of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

18. Stoer, J. and R. Bulirsch, Introduction to Numerical Analysis, Spring-Verlag, Berlin, 1980.
doi:10.1007/978-1-4757-5592-3

19. Yao, X. and Y. Liu, "Evolutionary programming made faster," IEEE Transactions on Computation, Vol. 3, 82-102, 1999.
doi:10.1109/4235.771163

20. Ray, A., M. Kahar, S. Sarkar, S. Biswas, D. Sarkar, and P. P. Sarkar, "A novel broad and multiband frequency selective surface," Microwave and Optical Technology Letters, Vol. 54, 1353-1355, 2012.
doi:10.1002/mop.26843