Vol. 35
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-03-19
Translational Motion Compensation Techniques in ISAR Imaging for Target with Micro-Motion Parts
By
Progress In Electromagnetics Research M, Vol. 35, 113-120, 2014
Abstract
In inverse synthetic aperture radar (ISAR) imaging, micro-motion structures on the target will induce additional time-varying frequency modulations to the radar echoes. Due to the disturbance of these mechanical vibration or rotation parts in the ISAR imaging, it will be difficult to obtain a well-focused ISAR image of the target using conventional translational motion compensation methods. To solve this problem, two improved translational motion compensation techniques have been proposed in this paper. Firstly, the power transform is used in the range bin aligment processing to depress the disturbance of the micro-motion parts. Then, a impreoved autofocusing methods based on range bins selection is presented, which only use the range bins of the radar returns of the main body scatterers for the phase adjustment. The results from the measured data are given to verify the validity of the improved translational motion compensation techniques proposed in this paper.
Citation
Bin Yuan, Shi You Xu, and Zeng Ping Chen, "Translational Motion Compensation Techniques in ISAR Imaging for Target with Micro-Motion Parts," Progress In Electromagnetics Research M, Vol. 35, 113-120, 2014.
doi:10.2528/PIERM14011503
References

1. Chen, V. C., F. Y. Li, S. S. Ho, et al. "Micro-Doppler effect in radar: Phenomenon, model, and simulation study," IEEE Trans. Aerosp. Electron. Syst., Vol. 42, No. 1, 2-21, 2006.
doi:10.1109/TAES.2006.1603402

2. Chen, V. C., F. Y. Li, S. S. Ho, et al. "Analysis of micro-Doppler signatures," Proc. Inst. Elect. Eng. --- Radar Sonar Navig., Vol. 150, No. 4, 271-276, 2003.
doi:10.1049/ip-rsn:20030743

3. Setlur, P., M. Amin, and T. Thayaparan, "Micro-Doppler signal estimation for vibrating and rotating targets," Proc. 8th Int. Symp. Signal Process, 639-642, Aug. 2005.

4. Thayaparan, T., E. Abrol, E. Riseborough, et al. "Analysis of radar micro-Doppler signatures from experimental helicopter and human data," IET Radar Sonar Navig., Vol. 1, No. 4, 289-299, 2007.
doi:10.1049/iet-rsn:20060103

5. Li, J. and H. Ling, "Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts," Proc. Inst. Elect. Eng. --- Radar Sonar Navig., Vol. 150, No. 4, 284-291, 2003.
doi:10.1049/ip-rsn:20030729

6. Stankovic, L., I. Djurovic, and T. Thayaparan, "Separation of target rigid body and micro-Doppler effects in ISAR imaging," IEEE Trans. Aerosp. Electron. Syst., Vol. 42, No. 4, 1496-1506, 2006.
doi:10.1109/TAES.2006.314590

7. Bai, X., M. Xing, F. Zhou, et al. "Imaging of micromotion targets with rotating parts based on empirical-mode decomposition," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 11, 3514-3523, 2008.
doi:10.1109/TGRS.2008.2002322

8. Yuan, B. and Z. Chen, "Micro-Doppler analysis and separation based on complex local mean decomposition for aircraft with fast rotating parts in ISAR imaging," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 2, 1285-1298, 2014.
doi:10.1109/TGRS.2013.2249588

9. Chen, C. C., H. C. Andrews, and S. Xu, "Target motion induced radar imaging," IEEE Trans. Aerospace Electron. Syst., Vol. 16, No. 1, 2-14, 1980.
doi:10.1109/TAES.1980.308873

10. Wang, J. and D. Kasilingam, "Global range alignment for ISAR," IEEE Trans. Aerospace Electron. Syst., Vol. 39, No. 1, 351-357, 2003.
doi:10.1109/TAES.2003.1188917

11. Wei, Y., T. S. Yeo, and B. Zheng, "Weighted least-squares estimation of phase error for SAR/ISAR autofocus," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2487-2494, 1999.
doi:10.1109/36.789644

12. Itoh, T. M. and G. W. Donohoe, "Motion compensation for ISAR via centroid tracking," IEEE Trans. Aerospace Electron. Syst., Vol. 32, No. 7, 1191-1197, 1996.
doi:10.1109/7.532283

13. Wahl, D. E., P. H. Eichel, D. C. Ghiglia, et al. "Phase gradient autofocus --- A robust tool for high resolution SAR phase correction," IEEE Trans. Aerospace Electron. Syst., Vol. 30, No. 3, 827-835, 1994.
doi:10.1109/7.303752

14. Xi, L., L. Guosui, and J. Ni, "Autofocusing of ISAR images based on entropy minimization," IEEE Trans. Aerospace Electron. Syst., Vol. 35, No. 4, 1240-1252, 1999.
doi:10.1109/7.805442

15. Martorella, M., F. Berizzi, and B. Haywood, "Contrast maximization based technique for 2-D ISAR autofocusing," IEE Proc., Radar Sonar Navig, Vol. 152, No. 4, 253-262, 2005.
doi:10.1049/ip-rsn:20045123