Vol. 45
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-03-27
Compact Tri-Band Meandered Ring Monopole Antenna with Two Embedded Strips for WLAN/WiMAX Applications
By
Progress In Electromagnetics Research Letters, Vol. 45, 63-67, 2014
Abstract
A novel coplanar waveguide (CPW)-fed tri-band monopole antenna for WLAN/WiMAX applications is presented. To get a compact antenna size, meandering and coupling technologies are used here. Meanwhile, with the loading method, the higher mode is used to cover the required band. The antenna has a very small size of only 18×28 mm2. The measured and simulated results show that the proposed antenna has three separate 10-dB impedance bandwidths of 220 MHz (2.36-2.58 GHz), 470 MHz (3.36-3.83 GHz) and 1460 MHz (4.83-6.29 GHz), which can cover all the 2.4/5.2/5.8 GHz WLAN and 3.5/5.5 GHz WiMAX bands. Good dipole-like radiation characteristics are obtained over the operating bands.
Citation
Hong Chen, Ying-Zeng Yin, and Jianjun Wu, "Compact Tri-Band Meandered Ring Monopole Antenna with Two Embedded Strips for WLAN/WiMAX Applications," Progress In Electromagnetics Research Letters, Vol. 45, 63-67, 2014.
doi:10.2528/PIERL14022402
References

1. Chu, Q.-X. and L.-H. Ye, "Design of compact dual-wideband antenna with assemble monopoles," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 4063-4066, Dec. 2010.
doi:10.1109/TAP.2010.2078451

2. Yoon, J.-H., "Fabrication and measurement of rectangular ring with open-ended CPW-fed monopole antenna for 2.4/5.2-GHz WLAN operation," Microw. Opt. Technol. Lett., Vol. 48, No. 8, 1480-1483, Aug. 2006.
doi:10.1002/mop.21736

3. Koo, T.-W., D. Kim, J.-I. Ryu, J.-C. Kim, and J.-G. Yook, "A coupled dual-U-shaped monopole antenna for WiMAX triple-band operation," Microw. Opt. Technol. Lett., Vol. 53, No. 4, 1745-1748, Apr. 2011.
doi:10.1002/mop.25842

4. Zhang, L., Y.-C. Jiao, G. Zhao, Y. Song, and F.-S. Zhang, "Broadband dual-band CPW-fed closed rectangular ring monopole antenna with a vertical strip for WLAN/WiMAX operation," Microw. Opt. Technol. Lett., Vol. 50, No. 7, 1929-1931, Jul. 2008.
doi:10.1002/mop.23514

5. Zhang, Q.-Y. and Q.-X. Chu, "Triple-band dual rectangular ring printed monopole antenna for WLAN/WiMAX applications," Microw. Opt. Technol. Lett., Vol. 51, No. 12, 1066-1073, Dec. 2009.
doi:10.1002/mop.24773

6. Ren, X.-S., Y.-Z. Yin, S.-F. Zheng, S.-L. Zuo, and B.-W. Liu, "Triple-band rectangular ring monopole antenna for WLAN/WiMAX applications," Microw. Opt. Technol. Lett., Vol. 53, No. 5, 2974-2978, 2011.
doi:10.1002/mop.25943

7. Shams, K. M. Z. and M. Ali, "Study and design of a capacitively coupled polymeric internal antenna," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 985-993, Mar. 2005.
doi:10.1109/TAP.2004.842650

8. Chi, Y.-W. and K.-L. Wong, "Compact multiband folded loop chip antenna for small-size mobile phone," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3797-3803, 2008.
doi:10.1109/TAP.2008.2007280

9. Wong, K.-L. and C.-H. Huang, "Printed loop antenna with a perpendicular feed for penta-band mobile phone application," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2138-2141, 2008.
doi:10.1109/TAP.2008.924770

10. Zhai, H.-Q., Z.-H. Ma, Y. Han, and C.-H. Liang, "A compact printed antenna for triple-band WLAN/WiMAX applications," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 65-68, Jul. 2013.

11. Hua, M.-J., P. Wang, Y. Zheng, and S. L. Yuan, "Compact tri-band CPW-fed antenna for WLAN/WiMAX applications," IET Electron. Lett., Vol. 49, No. 18, 1118-1119, Aug. 2013.
doi:10.1049/el.2013.1669