Vol. 36
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-06-21
Graphene Based Transmitarray for Terahertz Applications
By
Progress In Electromagnetics Research M, Vol. 36, 185-191, 2014
Abstract
Circularly polarized graphene based transmitarray for terahertz applications is proposed. The characteristics of the graphene material is explained. The cell element of the transmitarray is made of square Quartz cell. Dual circular graphene rings are printed on both sides of the Quartz substrate. The graphene ring radius is varied to change the transmission coefficient phase and magnitude. The effect of the graphene chemical potential on the transmission coefficient is demonstrated. Transmitarray is composed of 9×9 unit cell elements. A circularly polarized circular horn is used to feed the transmitarray at f=6 THz. The left- and right-hand field components in the E- and H-plane are determined. The variation of the gain and the axial-ratio with the frequency are explained. The peak gain is 18.63 dB and 1-dB gain bandwidth is 6.8%. The transmitarray produces a circular polarization from 5.5 THz to 6.5 THz.
Citation
Hend Abd El-Azem Malhat Saber Zainud-Deen Shaymaa Gaber , "Graphene Based Transmitarray for Terahertz Applications," Progress In Electromagnetics Research M, Vol. 36, 185-191, 2014.
doi:10.2528/PIERM14050705
http://www.jpier.org/PIERM/pier.php?paper=14050705
References

1. Choi, W. and J. Lee, Graphene: Synthesis and Applications, CRC Press Taylor & Francis Group, NW, USA, 2012.

2. Bao, W., Electrical and mechanical properties of graphene, Ph.D Thesis, University of California Riverside, USA, 2012.

3. Jian, L., Graphene and its hybrid nanostructures for nanoelectronics and energy applications, Ph.D Thesis, University of California Riverside, USA, 2011.

4. Hansen, R. C., Phased Array Antennas, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2009.

5. Hum, S. V. and J. Perruisseau-Carrier, "Reconfigurable reflectarray and array lenses for dynamic antenna beam control: A review," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 183-198, Jan. 2014.

6. Rodrigo, D., L. Jofre, and J. Perruisseau-Carrier, "Unit cell for frequency-tunable beamscanning reflectarrays," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 5992-5999, 2013.

7. Gaber, S. M., Analysis and design of reflectarrays/transmitarrays antennas, Ph.D Thesis, Minoufiya University, 2013.

8. Huang, J. and J. A. Encinar, Reflectarray Antennas, Wiley-IEEE Press, Pisataway, NJ, 2007.

9. Zainud-Deen, S. H., H. A. Malhat, S. M. Gaber, and K. H. Awadalla, "Perforated nanoantenna reflectarray," Progress In Electromagnetics Research M, Vol. 29, 253-265, 2013.

10. Zainud-Deen, S. H., H. A. Malhat, S. M. Gaber, and K. H. Awadalla, "Plasma reflectarray," Plasmonic Journal, Vol. 8, 1469-1475, 2013.

11. Zainud-Deen, S. H., H. A. Malhat, S. M. Gaber, and K. H. Awadalla, "Beam steering plasma reflectarray/transmitarray antennas," Plasmonic Journal, DOI 10.1007/s11468-013-9645-4, 2013.

12. Lau, J. Y. and S. V. Hum, "Reconfigurable transmitarray design approaches for beamforming applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5679-5689, Dec. 2012.

13. Lau, J. Y. and S. V. Hum, "A wideband reconfigurable transmitarray element," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1303-1311, Mar. 2012.

14. Cooke, S. J., R. Shtokhamer, A. A. Mondelli, and B. Levush, "A finite integration method for conformal, structure-grid, electromagnetic simulation," Journal of Computational Physics, Vol. 215, 321-347, 2006.

15. Rouhi, N., S. Capdevila, D. Jain, K. Zand, Y. Wang, E. Brown, L. Jofre, and P. Burke, "Terahertz graphene optics," Nano Research Journal, Vol. 5, No. 10, 667-678, Oct. 2012.

16. Kadhom, M. J., J. S. Aziz, and R. S. Fyath, "Performance investigation of loop and helical carbon nanotube antennas," Journal of Emerging Trends in Computing and Information Sciences, Vol. 3, No. 12, 1606-1613, Dec. 2012.