1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
4. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
5. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617 Google Scholar
6. LiHou, L., J. Y. Chin, X.M.Yang, X. Q. Lin, R. Liu, F. Y. Xu, and T. J.Cui, "Advanced parameter retrievals for metamaterial slabs using an inhomogeneous model," J. Appl. Phys., Vol. 103, No. 6, 064904, 2008.
doi:10.1063/1.2885351 Google Scholar
7. Qureshi, F., M. A. Antoniades, and G. V. Eleftheriades, "A compact and low-profile metamaterial ring antenna with vertical polarization," IEEE Antennas Wireless Propag. Lett., Vol. 4, 333-336, 2005.
doi:10.1109/LAWP.2005.857041 Google Scholar
8. Alici, K. B. and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys., Vol. 101, No. 8, 083104, 2007.
doi:10.1063/1.2722232 Google Scholar
9. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 691-707, 2008.
doi:10.1109/TAP.2008.916949 Google Scholar
10. Huang, M. D. and S. Y. Tan, "Efficient electrically small prolate spheroidal antennas coated with a shell of double-negative metamaterials," Progress In Electromagnetics Research, Vol. 82, 241-255, 2008.
doi:10.2528/PIER08031604 Google Scholar
11. Zhu, J. and G. V. Eleftheriades, "Dual-band metamaterial-inspired small monopole antenna for WiFi applications," Electron. Lett., Vol. 45, No. 22, 1104-1106, 2009.
doi:10.1049/el.2009.2107 Google Scholar
12. Herraiz-Martınez, F. J., L. E. Garcıa-Munoz, D. Gonzalez-Ovejero, V. Gonzalez-Posadas, and D. Segovia-Vargas, "Dual-frequency printed dipole loaded with split ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 8, 137-140, 2009.
doi:10.1109/LAWP.2009.2012402 Google Scholar
13. Antoniades, M. A. and G. V. Eleftheriades, "A broadband dual-mode monopole antenna using NRI-TL metamaterial loading," IEEE Antennas Wireless Propag. Lett.,, Vol. 8, 258-261, 2009.
doi:10.1109/LAWP.2009.2014402 Google Scholar
14. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1031-1038, 2010.
doi:10.1109/TAP.2010.2041317 Google Scholar
15. Ntaikos, D. K., N. K. Bourgis, and T. V. Yioultsis, "Metamaterial-based electrically small multiband planar monopole antennas," IEEE Antennas Wireless Propag. Lett., Vol. 10, 963-966, 2011.
doi:10.1109/LAWP.2011.2167309 Google Scholar
16. Ye, D., S. Xi, H. Chen, J. Huangfu, and L.-X. Ran, "Achieving large effective aperture antenna with small volume based on coordinate transformation," Progress In Electromagnetics Research, Vol. 111, 407-418, 2011.
doi:10.2528/PIER10081303 Google Scholar
17. Wang, P., G.-J. Wen, Y.-J. Huang, and Y.-H. Sun, "Compact CPW-fed planar monopole antenna with distinct triple bands for WiFi/WiMAX applications," Electron. Lett., Vol. 48, No. 7, 357-359, 2012.
doi:10.1049/el.2011.3692 Google Scholar
18. Li, K., C. Zhu, L. Li, Y.-M. Cai, and C.-H. Liang, "Design of electrically small metamaterial antenna with ELC and EBG loading," IEEE Antennas Wireless Propag. Lett., Vol. 12, 678-681, 2013.
doi:10.1109/LAWP.2013.2264099 Google Scholar
19. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martın, and M. Sorolla, "Effective negative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029 Google Scholar
20. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R.Marques, F. Martın, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, No. 19, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401 Google Scholar
21. Baena, J. D., J. Bonache, F. Martın, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcıa- Garcıa, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211 Google Scholar
22. Anguera, J., A. Andujar, M.-C. Huynh, C. Orlenius, C. Picher, and C. Puente, "Advances in antenna technology for wireless handheld devices," International Journal of Antennas and Propagation, Vol. 2013, Article ID 838364, 2013. Google Scholar
23. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, Vol. 6, No. 3, 311-355, 1998.
doi:10.1023/A:1008889222784 Google Scholar
24. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Trans. Veh. Technol., Vol. 36, No. 4, 149-172, 1987.
doi:10.1109/T-VT.1987.24115 Google Scholar
25. Abouda, A. A. and S. G. Haggman, "Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.2528/PIER06072803 Google Scholar
26. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjani, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565 Google Scholar
27. Coulombe, M., S. F. Koodiani, and C. Caloz, "Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1076-1086, 2010.
doi:10.1109/TAP.2010.2041152 Google Scholar
28. Zhu, J. and G. V. Eleftheriades, "A simple approach for reducing mutual coupling in two closely spaced metamaterial-inspired monopole antennas," IEEE Antennas Wireless Propag. Lett., Vol. 9, 379-382, 2010. Google Scholar
29. Han, X., H. Hafdallah-Ouslimani, T. Zhang, and A. C. Priou, "CSRRs for efficient reduction of the electromagnetic interferences and mutual coupling in microstrip circuits," Progress In Electromagnetics Research B, Vol. 42, 291-309, 2012.
doi:10.2528/PIERB12052406 Google Scholar
30. Han, M. and J. Choi, "Multiband MIMO antenna using orthogonally polarized dipole elements for mobile communications," Microw. Opt. Techn. Lett., Vol. 53, No. 9, 2043-2048, 2011.
doi:10.1002/mop.26198 Google Scholar
31. Park, S. and C. Jung, "Compact MIMO antenna with high isolation performance," Electron. Lett., Vol. 46, No. 6, 390-391, 2010.
doi:10.1049/el.2010.3301 Google Scholar
32. Sarrazin, J., Y. Mahe, S. Avrillon, and S. Toutain, "Collocated microstrip antennas for MIMO systems with a low mutual coupling using mode confinement," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 589-592, 2010.
doi:10.1109/TAP.2009.2037690 Google Scholar
33. Ferrer, P. J., J. M. Gonzalez-Arbesu, and J. Romeu, "Decorrelation of two closely spaced antennas with a metamaterial AMC surface," Microw. Opt. Technol. Lett., Vol. 50, No. 5, 1414-1417, 2008.
doi:10.1002/mop.23365 Google Scholar
34. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2902, 2010.
doi:10.1109/TAP.2010.2052560 Google Scholar
35. Hsu, C.-C. and K.-H. Lin H.-L. Su, "Implementation of broadband isolator using metamaterialinspired resonators and a T-shaped branch for MIMO antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3936-3939, 2011.
doi:10.1109/TAP.2011.2163741 Google Scholar
36. Sharawi, M. S., A. B. Numan, and D. N. Aloi, "Isolation improvement in a dual-band dual-element MIMO antenna system using capacitively loaded loops," Progress In Electromagnetics Research, Vol. 134, 247-266, 2013.
doi:10.2528/PIER12090610 Google Scholar
37. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth, and Q of antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1298-1324, 2005.
doi:10.1109/TAP.2005.844443 Google Scholar
38. Mavridis, G. A., D. E. Anagnostou, and M. T. Chryssomallis, "Evaluation of the quality factor, Q, of electrically small microstrip-patch antennas," IEEE Antennas Propag. Mag., Vol. 53, No. 4, 216-224, 2011.
doi:10.1109/MAP.2011.6097329 Google Scholar
39. Yaghjian, A. D., M. Gustafsson, and B. L. G. Jonsson, "Minimum Q for lossy and lossless electrically small dipole antennas," Progress In Electromagnetics Research, Vol. 143, 641-673, 2013.
doi:10.2528/PIER13103107 Google Scholar
40. Hrabar, S., Z. Eres, and J. Bartolic, "Capacitively loaded loop as basic element of negative permeability meta-material," Proc. Eur. Microw. Conf., 357-361, Milan, Italy, 2002. Google Scholar
41. Erentok, A., P. L. Luljak, and R. W. Ziolkowski, "Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 160-172, 2005.
doi:10.1109/TAP.2004.840534 Google Scholar
42. Guo, Y., G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou, "Efficient modeling of novel uniplanar left-handed metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1462-1468, 2005.
doi:10.1109/TMTT.2005.845204 Google Scholar
43. Thaysen, J. and K. B. Jakobsen, "Envelope correlation in (N,N) MIMO antenna array from scattering parameters," Microw. Opt. Technol. Lett., Vol. 48, No. 5, 832-834, 2006.
doi:10.1002/mop.21490 Google Scholar
44. Karatzidis, D. I., T. V. Yioultsis, and E. E. Kriezis, "Fast analysis of photonic crystal structures with mixed-order prism macroelements," J. Lightw. Technol., Vol. 26, No. 13, 2002-2009, 2008.
doi:10.1109/JLT.2008.922209 Google Scholar
45. Aydin, K. and E. Ozbay, "Identifying magnetic response of split-ring resonators at microwave frequencies," Opto-Electon. Rev., Vol. 14, No. 3, 193-199, 2006.
doi:10.2478/s11772-006-0025-x Google Scholar
46. Wheeler, H. A., "Fundamental Limitations of small antennas," Proc. IRE, Vol. 35, No. 12, 1479-1484, 1947.
doi:10.1109/JRPROC.1947.226199 Google Scholar
47. Ziolkowski, R.W. and A. Erentok, "At and below the chu limit: Passive and active broad bandwidth metamaterial-based electrically small antennas," IET Microw. Antennas Propag., Vol. 1, No. 1, 116-128, 2007.
doi:10.1049/iet-map:20050342 Google Scholar
48. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672-676, 1996.
doi:10.1109/8.496253 Google Scholar