Vol. 48
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-08-13
A Compact Triple-Mode Bandpass HMSIW Filter
By
Progress In Electromagnetics Research Letters, Vol. 48, 39-43, 2014
Abstract
A simple method for designing a triple-mode bandpass filter is presented in this paper. Triple-mode is achieved by using half-mode substrate integrated waveguide (HMSIW) cavity.Three perturbation metal vias were introduced for shifting resonant modes.The resonant frequencies of these modes can be adjusted by the location and the diameter of perturbation vias properly. In order to improve the out-of-band rejection, the CPW-to-SIW transition was added. A triple-mode HMSIW filter with the center frequency of 13 GHz was designed and fabricated. The measured fractional bandwidth is 35% with a transmission zero located at 20.4 GHz. Good agreement is observed between simulation and measurement.
Citation
Zicheng Wang, Tao Yang, and Jun Dong, "A Compact Triple-Mode Bandpass HMSIW Filter," Progress In Electromagnetics Research Letters, Vol. 48, 39-43, 2014.
doi:10.2528/PIERL14060802
References

1. Amari, S. and U. Rosenberg, "New in-line dual-and triple-mode cavity filters with nonresonating nodes," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1272-1279, 2005.
doi:10.1109/TMTT.2005.845777

2. Balalem, A., A. R. Ali, S. Amari, et al. "Realization of a microstrip triple-mode bandpass filter using a square-loop resonator," IEEE International Microwave Symposium Digest, 849-852, 2009.

3. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 2, 68-70, 2001.
doi:10.1109/7260.914305

4. Liu, B., W. Hong, Y. Q. Wang, et al. "Half mode substrate integrated waveguide (HM-SIW) 3-dB coupler," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 1, 22-24, 2007.
doi:10.1109/LMWC.2006.887244

5. Chen, X. P., K. Wu, and Z. L. Li, "Dual-band and triple-band substrate integrated waveguide filters with Chebyshev and quasi-elliptic responses," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2569-2578, 2007.
doi:10.1109/TMTT.2007.909603

6. Deng, K., Z. Guo, C. Li, et al. "A compact planar bandpass filter with wide out-of-band rejection implemented by substrate-integrated waveguide and complementary split-ring resonator," Microwave and Optical Technology Letters, Vol. 53, No. 7, 1483-1487, 2011.
doi:10.1002/mop.26079

7. Cheng, F., X. Q. Lin, X. X. Liu, et al. "A compact dual-band bandpass SIW filter," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 3, 338-344, 2013.
doi:10.1080/09205071.2013.745387

8. Gong, K., W. Hong, H. Tang, et al. "C-band bandpass filter based on half mode substrate integrated waveguide (HMSIW) cavities," IEEE Asia Pacific Microwave Conference, APMC 2009, 2591-2594, 2009.
doi:10.1109/APMC.2009.5385241

9. Zhou, S., Z. Wang, R. Xu, et al. "A novel X-band half mode substrate integrated waveguide (HMSIW) bandpass filter," IEEE Asia Pacific Microwave Conference, APMC 2009, 1387-1389, 2009.
doi:10.1109/APMC.2009.5384496

10. Liu, W. and F. Liu, "A highly selective super-wide bandpass filter by cascading HMSIW with asymmetric defected ground structure," 2010 International Conference on IEEE Microwave and Millimeter Wave Technology (ICMMT), 77-80, 2010.
doi:10.1109/ICMMT.2010.5525285

11. Cassivi, Y., L. Perregrini, P. Arcioni, et al. "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 9, 333-335, 2002.
doi:10.1109/LMWC.2002.803188

12. Shen, W., W. Y. Yin, and X. W. Sun, "Compact substrate integrated waveguide (SIW) filter with defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 2, 83-85, 2011.