Vol. 38
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-09-11
Electromagnetic Wave Propagation in the Finite Periodically Layered Chiral Medium
By
Progress In Electromagnetics Research M, Vol. 38, 185-192, 2014
Abstract
The transmission and reflection coefficients of electromagnetic waves propagating through the finite periodically layered chiral structure are defined both theoretically (using the propagation matrix method) and experimentally. The coefficients of the propagation matrix of the periodically layered chiral medium are obtained. The boundaries of the forbidden bands for a periodic medium, whose unit cell consists of two different chiral layers were determined. It is shown that the boundaries of the forbidden bands do not depend on the chirality parameter of the layers. It is found that for certain values of the layers thicknesses, the forbidden band widths tend to zero and that the proposed method for calculation of the reflection and transmission coefficients can be used to determine the effective constitutive parameters of artificial chiral metamaterials. The transmission and reflection coefficients of plane electromagnetic waves propagated through the finite periodically layered chiral structure were determined experimentally for 20-40 GHz range. A good agreement between the experimental results and theoretical studies of the forbidden band spectrum for the structure under research has been shown.
Citation
Nikolai N. Beletskii Sergey Yu. Polevoy Sergey I. Tarapov , "Electromagnetic Wave Propagation in the Finite Periodically Layered Chiral Medium," Progress In Electromagnetics Research M, Vol. 38, 185-192, 2014.
doi:10.2528/PIERM14061006
http://www.jpier.org/PIERM/pier.php?paper=14061006
References

1. Brekhovskikh, L. M., Waves in Layered Media, Academic Press, San Diego, 1960.

2. Yariv, A. and P. Yeh, Optical Waves in Crystals, Wiley, New York, 1990.

3. Tuz, V. R., M. Yu. Vidil, and S. L. Prosvirnin, "Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance," Journal of Optics, Vol. 12, No. 9, 095102, 2010.
doi:10.1088/2040-8978/12/9/095102

4. Girich, A. A., S. Yu. Polevoy, S. I. Tarapov, A. M. Merzlikin, A. B. Granovsky, and D. P. Belozorov, "Experimental study of the Faraday effect in 1D-photonic crystal in millimeter waveband," Solid State Phenomena, Vol. 190, 365-368, 2012.
doi:10.4028/www.scientific.net/SSP.190.365

5. Tarapov, S. I. and D. P. Belozorov, "Microwaves in dispersive magnetic composite media (review article)," Low Temperature Physics, Vol. 38, No. 7, 766-792, 2012.
doi:10.1063/1.4733684

6. Lekner, J., "Optical properties of isotropic chiral media," Pure Appl. Opt., Vol. 5, 417-443, 1996.
doi:10.1088/0963-9659/5/4/008

7. Tuz, V. R. and V. B. Kazanskiy, "Depolarization properties of a periodic sequence of chiral and material layers," J. Opt. Soc. Am. A, Vol. 25, No. 11, 2704-2709, 2008.
doi:10.1364/JOSAA.25.002704

8. Tuz, V. R. and C.-W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010.
doi:10.2528/PIER10030706

9. Ivanov, O. V., Electromagnetic Wave Propagation in Anisotropic and Bianisotropic Layered Structures, UlSTU, Ulyanovsk, 2010 (in Russian).

10. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, Boston-London, 1994.

11. Katsenelenbaum, B. Z., E. N. Korshunova, A. N. Sivov, and A. D. Shatrov, "Chiral electromagnetic objects," Phys. Usp., Vol. 40, No. 11, 1149-1160, 1997.
doi:10.1070/PU1997v040n11ABEH000306

12. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, Nauka, Moscow, 1988.

13. Polevoy, S. Y., "Experimental determination of constitutive parameters of the chiral media in the millimeter wavelength range," Radiophysics and Electronics, Vol. 4(18), No. 4, 27-33, 2013.

14. Bulgakov, A. A. and V. K. Kononenko, "Dispersion properties of cyclotron waves in periodic semiconductor-insulator structures," Technical Physics, Vol. 49, No. 10, 1313-1318, 2004.
doi:10.1134/1.1809703

15. Vinogradov, A. P., A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, "Surface states in photonic crystals," Phys. Usp., Vol. 53, No. 3, 243-256, 2010.
doi:10.3367/UFNe.0180.201003b.0249

16. Polevoy, S. Y., S. L. Prosvirnin, S. I. Tarapov, and V. R. Tuz, "Resonant features of planar Faraday metamaterial with high structural symmetry," The Europ. Phys. J. Appl. Phys., Vol. 61, No. 3, 030501, 2013.
doi:10.1051/epjap/2013120320