Vol. 38
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-09-09
Analysis of Planar Circuits Using an Efficient Laguerre-Based FDTD Method
By
Progress In Electromagnetics Research M, Vol. 38, 155-163, 2014
Abstract
In this paper, an efficient three-dimensional Laguerre-based finite-difference time-domain (FDTD) method is used to analyze planar circuits. An iterative procedure is introduced to improve the accuracy. Both the time-domain waveforms and the S-parameters are presented. The numerical results show that at the comparable accuracy, the efficiency of the Laguerre-based FDTD method with an iterative procedure is superior to the FDTD method and alternating-direction implicit (ADI) FDTD method.
Citation
Yantao Duan, Bin Chen, Li-Hua Shi, and Cheng Gao, "Analysis of Planar Circuits Using an Efficient Laguerre-Based FDTD Method," Progress In Electromagnetics Research M, Vol. 38, 155-163, 2014.
doi:10.2528/PIERM14061007
References

1. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606

2. Mao, Y.-F., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for the oblique incidence programs on periodic structures," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012.
doi:10.2528/PIER12032306

3. Pergol, M. and W. Zieniutycz, "Rectangular microstrip resonator illuminated by normal-incident plane wave," Progress In Electromagnetics Research, Vol. 120, 83-97, 2011.

4. Cao, D.-A. and Q.-X. Chu, "FDTD analysis of chiral discontinuities in waveguides," Progress In Electromagnetics Research Letters, Vol. 20, 19-26, 2011.

5. Sirenko, K., "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.2528/PIER10102707

6. Kantartzis, N. V., "Hybrid unconditionally stable high-order nonstandard schemes with optimal error-controllable spectral resolution for complex microwave problems," Int. J. Numer. Model.: Electronic Networks, Devices and Fields, Vol. 25, No. 5–6, 621-644, 2012.
doi:10.1002/jnm.1846

7. Kantartzis, N. V., D. L. Sounas, C. S. Antonopoulos, and T. D. Tsiboukis, "A wideband ADIFDTD algorithm for the design of double negative metamaterial-based waveguides and antenna structures," IEEE Trans. Magn., Vol. 43, No. 4, 1329-1332, Apr. 2007.
doi:10.1109/TMAG.2006.891007

8. Zheng, H., L. Feng, and Q. Wu, "3-D nonorthogonal ADI-FDTD algorithm for the full-wave analysis of microwave circuit devices," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 1, 128-135, Jan. 2010.
doi:10.1109/TMTT.2009.2035868

9. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 1995.

10. Chung, Y. S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, 697-704, Mar. 2003.
doi:10.1109/TMTT.2003.808732

11. Srikumar, S. and A. Gasiewski, "Transient analysis of dispersive, periodic structures for oblique plane wave incidence using Laguerre marching-on-in-degree (MoD)," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4132-4138, Aug. 2013.
doi:10.1109/TAP.2013.2264044

12. He, G., W. Shao, X. Wang, and B. Wang, "An efficient domain decomposition Laguerre-FDTD method for two-dimensional scattering problems," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2639-2645, May 2013.
doi:10.1109/TAP.2013.2242836

13. Myunghyun, H., K. Srinivasan, and M. Swaminathan, "Transient chip-package cosimulation of multiscale structures using the Laguerre-FDTD scheme," IEEE Trans. Advanced Pakaging, Vol. 32, No. 4, 816-830, Nov. 2009.
doi:10.1109/TADVP.2009.2020518

14. Jung, B. H., Z. Mei, and T. K. Sarkar, "Transient wave propagation in a general dispersive media using the Laguerre functions in a marching-on-in-degree (MOD) methodology," Progress In Electromagnetics Research, Vol. 118, 135-149, 2011.
doi:10.2528/PIER11052408

15. Duan, Y. T., B. Chen, and Y. Yi, "Efficient implementation for the unconditionally stable 2-D WLP-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 11, 677-679, Nov. 2009.
doi:10.1109/LMWC.2009.2031995

16. Duan, Y. T., B. Chen, D. G. Fang, and B. H. Zhou, "Efficient implementation for 3-D Laguerrebased finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 1, 56-64, Jan. 2011.
doi:10.1109/TMTT.2010.2091206

17. Jung, K. Y., F. Teixeira, S. Garcia, and R. Lee, "On numerical artifacts of the complex envelope ADI-FDTD method," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 491-498, Feb. 2009.
doi:10.1109/TAP.2008.2011389

18. Zhang, Y., S. Lu, and J. Zhang, "Reduction of numerical dispersion of 3-D higher order ADI-FDTD method with artificial anisotropy," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 10, 2416-2428, Oct. 2009.
doi:10.1109/TMTT.2009.2029638

19. Zheng, H. and K. Leung, "A nonorthogonal ADI-FDTD algorithm for solving 2-D scattering problems," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3981-3902, Dec. 2009.

20. Tan, E. and D. Heh, "ADI-FDTD method with fourth order accuracy in time," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 5, 296-298, May 2008.
doi:10.1109/LMWC.2008.922099

21. Wang, S., F. L. Teixeira, and J. Chen, "An iterative ADI-FDTD with reduced splitting error," Microw. Wireless Compon. Lett., Vol. 15, No. 2, 92-94, Feb. 2005.
doi:10.1109/LMWC.2004.842835

22. Wang, S. and J. Chen, "Pre-iterative ADI-FDTD method for conductive medium," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 6, 1913-1918, Jun. 2005.
doi:10.1109/TMTT.2005.848086

23. Welfert, B. D., "Analysis of iterated ADI-FDTD schemes for Maxwell curl equations," J. Comput. Phys., Vol. 222, 9-27, Mar. 2007.
doi:10.1016/j.jcp.2006.05.038

24. Jung, K. Y. and F. L. Teixeira, "An iterative unconditionally stable LOD-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 2, 76-78, Feb. 2008.
doi:10.1109/LMWC.2007.915026

25. Yang, Y., R. S. Chen, W. C. Tang, K. Sha, and K. N. Yung, "Analysis of planar circuits using an unconditionally stable 3-D ADI-FDTD method," Microwave and Optical Technology Letters, Vol. 46, No. 2, 175-179, Jul. 2005.
doi:10.1002/mop.20936

26. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377-382, Nov. 1981.

27. Yuan, M., J. Koh, T. K. Sarkar, W. Lee, and M. Salazar-Palma, "A comparison of performance of three orthogonal polynomials in extraction of wide-band response using early time and low frequency data," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 785-792, Feb. 2005.
doi:10.1109/TAP.2004.841330

18. Yuan, M., A. De, T. K. Sarkar, J. Koh, and B. H. Jung, "Conditions for generation of stable and accurate hybrid TD-FD MoM solutions," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2552-2563, Jun. 2006.
doi:10.1109/TMTT.2006.875823

29. Bracken, J. E., D. K. Sun, and Z. J. Cendes, "S-domain methods for simultaneous time and frequency characterization of electromagnetic devices," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 9, 1277-1290, Sep. 1998.
doi:10.1109/22.709471