1. Mentes, S. S. and Z. Kaymaz, "Investigation of surface duct conditions over Istanbul, Turkey," J. Appl. Meteorol. Climatol., Vol. 46, No. 3, 318-–337, 2007.
doi:10.1175/JAM2452.1 Google Scholar
2. Skolnik, M. I., Introduction to Radar Systems, 3rd Edition, McGraw-Hill, 2001.
3. Ulaby, F. T., R. K. Moore, and A. K. Fung, "Microwave remote sensing fundamentals and radiometry," Microwave Remote Sensing: Active and Passive, Vol. 1, Addison-Wesley, 1981. Google Scholar
4. Kerans, A., A. S. Kulessa, E. Lensson, G. French, and G. S.Woods, "Implications of the evaporation duct for microwave radio path design over tropical oceans in Northern Australia," Workshop Appl. Radio Sci., Leura, Australia, 2002. Google Scholar
5. Sirkova, I. and M. Mikhalev, "Parabolic-equation-based study of ducting effects on microwave propagation," Microwave Opt. Technol. Lett., Vol. 42, No. 5, 390-394, 2004.
doi:10.1002/mop.20314 Google Scholar
6. Sirkova, I. and M. Mikhalev, "Influence of tropospheric duct parameters changes on microwave path loss," Proc. Int. Sci. Conf. Info. Commun. Energy Syst. Technol., 43-46, Sofia, Bulgaria, 2003. Google Scholar
7. Kuttler, J. R. and G. D. Dockery, "Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere," Radio Sci., Vol. 26, No. 2, 381-393, 1991.
doi:10.1029/91RS00109 Google Scholar
8. Douchin, N., S. Bolioli, F. Christophe, and P. Combes, "Theoretical study of the evaporation duct effects on satellite-to-ship radio links near the horizon," IEE Proc. Microwaves Antennas Propagat., Vol. 141, No. 4, 272-–278, 1994.
doi:10.1049/ip-map:19941168 Google Scholar
9. Apaydin, G. and L. Sevgi, "FEM-based surface wave multimixed-path propagator and path loss predictions," IEEE Antennas Wireless Propagat. Lett., Vol. 8, 1010-1013, 2009.
doi:10.1109/LAWP.2009.2030966 Google Scholar
10. Essen, H. and H. H. Fuchs, "Microwave and millimeterwave propagation within the marine boundary layer," German Microwave Conf., Karlsruhe, Germany, 2006. Google Scholar
11. Degrazia, G. A., D. Anfossi, J. C. Carvalho, C. Mangia, T. Tirabassi, and H. F. C. Velho, "Turbulence parameterisation for PBL dispersion models in all stability conditions," Atmos. Environ., Vol. 34, No. 21, 3575-3583, 2000.
doi:10.1016/S1352-2310(00)00116-3 Google Scholar
12. Kukushkin, A. and J.Wiley, Radio Wave Propagation in the Marine Boundary Layer, Wiley Online Library, 2004.
doi:10.1002/3527603816
13. Rouseff, D., "Simulated microwave propagation through tropospheric turbulence," IEEE Trans. Antennas Propagat., Vol. 40, No. 9, 1076-1083, 1992.
doi:10.1109/8.166533 Google Scholar
14. Hitney, H. V., "A practical tropospheric scatter model using the parabolic equation," IEEE Trans. Antennas Propagat., Vol. 41, No. 7, 905-909, 1993.
doi:10.1109/8.237621 Google Scholar
15. Hitney, H. V., "Evaporation duct propagation and near-grazing angle scattering from a rough sea," IEEE Int. Geosci. Remote Sensing Symp., 2631-2633, 1999. Google Scholar
16. Bein, G., "Monte Carlo computer technique for one-dimensional random media," IEEE Trans. Antennas Propagat., Vol. 21, No. 1, 83-88, 1973.
doi:10.1109/TAP.1973.1140400 Google Scholar
17. Adams, R. N. and E. D. Denman, Wave Propagation and Turbulent Media, Elsevier, 1966.
18. Holtslag, A. A. M. and F. T. M. Nieuwstadt, "Scaling the atmospheric boundary layer," Boundary Layer Meteorol., Vol. 36, No. 1, 201-209, 1986.
doi:10.1007/BF00117468 Google Scholar
19. Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, and C. J. Readings, "Turbulence structure in the convective boundary layer," J. Atmos. Sci., Vol. 33, No. 11, 2152-2169, 1976.
doi:10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2 Google Scholar
20. Moeng, C.-H., "A large-eddy-simulation model for the study of planetary boundary-layer turbulence," J. Atmos. Sci., Vol. 41, No. 13, 2052-2062, 1984.
doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2 Google Scholar
21. Nieuwstadt, F. T. M., "The turbulent structure of the stable, nocturnal boundary layer," J. Atmos. Sci., Vol. 41, No. 14, 2202-2216, 1984.
doi:10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2 Google Scholar
22. Levy, M., Parabolic Equation Methods for Electromagnetic Wave Propagation, Inst. Electr. Eng., 2000.
doi:10.1049/PBEW045E
23. Frehlich, R., "Simulation of laser propagation in a turbulent atmosphere," Appl. Opt., Vol. 39, 393-397, January 2000.
doi:10.1364/AO.39.000393 Google Scholar
24. Wiener, N., "Generalized harmonic analysis," Acta Mathematica, Vol. 55, No. 1, 117-258, 1930.
doi:10.1007/BF02546511 Google Scholar
25. Ishimaru, A., "Wave Propagation and Scattering in Random Media," IEEE Press, 1997. Google Scholar
26. Fabbro, V. and L. Feral, "Comparison of 2D and 3D electromagnetic approaches to predict tropospheric turbulence effects in clear sky conditions," IEEE Trans. Antennas Propagat., Vol. 60, No. 9, 4398-4407, 2012.
doi:10.1109/TAP.2012.2207070 Google Scholar
27. Smith, E. K. and S. Weintraub, "The constants in the equation for atmospheric refractive index at radio frequencies," Proc. IRE, Vol. 41, 1035-1037, 1953.
doi:10.1109/JRPROC.1953.274297 Google Scholar
28. Bean, B. R. and E. Dutton, Radio Meteorology, Dover Publications, 1968.
29. Berberan-Santos, M. N., E. N. Bodunov, and L. Pogliani, "On the barometric formula," Am. J. Phys., Vol. 65, 404, 1997.
doi:10.1119/1.18555 Google Scholar
30. Wallace, J. M. and P. V. Hobbs, "Atmospheric Science: An Introductory Survey," Academic Press, 2006. Google Scholar
31. Arya, P. S., Introduction to Micrometeorology, 2nd Edition, Academic press, 2001.
32. Yamartino, R. J., J. S. Scire, G. R. Carmichael, and Y. S. Chang, "The CALGRID mesoscale photochemical grid model. I. Model formulation," Atmos. Environ. Part A, Vol. 26, No. 8, 1493-1512, 1992.
doi:10.1016/0960-1686(92)90134-7 Google Scholar
33. De Bruin, H. A. R., R. J. Ronda, and B. J. H. Van De Wiel, "Approximate solutions for the Obukhov length and the surface fluxes in terms of bulk Richardson numbers," Boundary Layer Meteorol., Vol. 95, No. 1, 145-157, 2000.
doi:10.1023/A:1002671628167 Google Scholar
34. Panovsky, H. A. and J. A. Dutton, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley, 1984.
35. Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, "Review and intercomparison of operational methods for the determination of the mixing height," Atmos. Environ., Vol. 34, No. 7, 1001-1027, 2000.
doi:10.1016/S1352-2310(99)00349-0 Google Scholar
36. Gryning, S.-E. and E. Batchvarova, "Parameterization of the depth of the entrainment zone above the daytime mixed layer," Quart. J. Royal Meteorol. Soc., Vol. 120, No. 515, 47-58, 1994.
doi:10.1002/qj.49712051505 Google Scholar
37. Sun, J., W. Jiang, Z. Chen, and R. Yuan, "Parameterization for the depth of the entrainment zone above the convectively mixed layer," Adv. Atmos. Sci., Vol. 22, No. 1, 114-121, 2005.
doi:10.1007/BF02930874 Google Scholar
38. Cox, D. C., H. W. Arnold, and H. H. Hoffman, "Observations of cloud-produced amplitude scintillation on 19- and 28-GHz Earth-space paths," Radio Sci., Vol. 16, No. 5, 885-907, 1981.
doi:10.1029/RS016i005p00885 Google Scholar
39. Tunick, A., "Optical turbulence effects on ground to satellite microwave refractivity,", DTIC Document ADA449682, 2006. Google Scholar
40. Andreas, E .L., "On the Kolmogorov constants for the temperature-humidity cospectrum and the refractive index spectrum," J. Atmos. Sci., Vol. 44, No. 17, 2399-2406, 1987.
doi:10.1175/1520-0469(1987)044<2399:OTKCFT>2.0.CO;2 Google Scholar
41. Tatarskii, V. I., The Effects of the Turbulent Atmosphere on Wave Propagation, Israel Program for Scientific Translations, 1971.
42. Burk, S. D., "Refractive index structure parameters-time-dependent calculations using a numerical boundary-layer model," J. Appl. Meteorol., Vol. 19, 562-576, 1980.
doi:10.1175/1520-0450(1980)019<0562:RISPTD>2.0.CO;2 Google Scholar
43. Gryning, S. E., E. Batchvarova, B. Brummer, H. Jørgensen, and S. Larsen, "On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer," Boundary Layer Meteorol., Vol. 124, No. 2, 251-268, 2007.
doi:10.1007/s10546-007-9166-9 Google Scholar
44. Brooks, I. M., A. K. Goroch, and D. P. Rogers, "Observations of strong surface radar ducts over the Persian Gulf," J. Appl. Meteorol., Vol. 38, No. 9, 1293-1310, 1999.
doi:10.1175/1520-0450(1999)038<1293:OOSSRD>2.0.CO;2 Google Scholar
45. Atkinson, B. W. and M. Zhu, "Radar-duct and boundary-layer characteristics over the area of the Gulf," Q. J. R. Meteorol. Soc., Vol. 131, No. 609, 1923-1953, 2005.
doi:10.1256/qj.04.113 Google Scholar
46. Rao, P. G., H. R. Hatwar, M. H. Al-Sulaiti, and A. H. Al-Mulla, "Summer shamals over the Arabian Gulf," Weather, Vol. 58, No. 12, 471-478, 2003.
doi:10.1002/wea.6080581207 Google Scholar
47. Garratt, J. R. and B. F. Ryan, "The structure of the stably stratified internal boundary layer in offshore flow over the sea," Boundary-Layer Meteorol., Vol. 47, No. 1, 17-40, 1989.
doi:10.1007/BF00122320 Google Scholar
48. Plant, R .S. and B. W. Atkinson, "Sea-breeze modification of the growth of a marine internal boundary layer," Boundary Layer Meteorol., Vol. 104, No. 2, 201-228, 2002.
doi:10.1023/A:1016045229957 Google Scholar
49. Zhu, M. and B.W. Atkinson, "Observed and modelled climatology of the land-sea breeze circulation over the Persian Gulf," Int. J. Climatol., Vol. 24, No. 7, 883-905, 2004.
doi:10.1002/joc.1045 Google Scholar
50. Ludi, A. and A. Magun, "Near-horizontal line-of-sight millimeter-wave propagation measurements for the determination of outer length scales and anisotropy of turbulent refractive index fluctuations in the lower troposphere," Radio Sci., Vol. 37, No. 2, 12-1-19, 2002.
doi:10.1029/2001RS002493 Google Scholar