Vol. 48
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-08-20
A Distinctive Method of Eliminating Out-Band Instability in Cascaded Active Device System Based on Narrow-Band Attenuation
By
Progress In Electromagnetics Research Letters, Vol. 48, 59-65, 2014
Abstract
A distinctive connection method in cascaded RF/MW active device system achieving both stability and low gain loss is presented. Unlike traditional methods (isolator and attenuator), the proposed solution introduces an appropriate length of transmission line to change the input impedance at the out-band instable frequency point and uses a narrow-band termination to absorb the instable power without deteriorating in-band signal. Moreover, the reason that instability often occurs in the cascaded system is analysed with S-parameters, and it turns out to be a kind of out-band instability. And then the solution is verified by an adjustable circuit example whose insertion loss is below 0.3 dB.
Citation
Xiaowei Zhu, Jun-Ping Geng, Xianling Liang, Rong-Hong Jin, and Yangzhen Huang, "A Distinctive Method of Eliminating Out-Band Instability in Cascaded Active Device System Based on Narrow-Band Attenuation," Progress In Electromagnetics Research Letters, Vol. 48, 59-65, 2014.
doi:10.2528/PIERL14062504
References

1. Mons, S., J. C. Nallatamby, R. Quere, P. Savary, and J. Obregon, "A unified approach for the linear and nonlinear stability analysis of microwave circuits using commercially available tools," IEEE Trans. Microwave Theory and Techniques, Vol. 47, No. 12, 2403-2409, Dec. 1999.
doi:10.1109/22.808987

2. Gray, P. and R. Meyer, Analysis and Design of Analog Integrated Circuit, John Wiley and Sons, 1993.

3. Kundert, K. S., The Designer’s Guide to SPICE and Spectre, Kluwer Academic Publishers, 1995.

4. Otegi, N., A. Anakabe, J. Pelaz, J. M. Collantes, and G. Soubercaze-Pun, "Experimental characterization of stability margins in microwave amplifiers," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 12, 4145-4156, Dec. 2012.
doi:10.1109/TMTT.2012.2221736

5. Cripps, S. C., RF Power Amplifiers for Wireless Communications, 2nd Edition, Artech House Inc., Norwood MA, 2006.

6. Saad, P., C. Fager, H. Cao, H. Zirath, and K. Andersson, "Design of a highly efficient 2–4 GHz octave bandwidth GaN-HEMT power amplifier," IEEE Trans. Microwave Theory and Techniques, Vol. 58, No. 7, 1677-1685, Jul. 2010.
doi:10.1109/TMTT.2010.2049770

7. Jackson, R. W., "Rollett proviso in the stability of linear microwave circuits," IEEE Trans. Microwave Theory and Techniques, Vol. 54, No. 3, 993-1000, Mar. 2006.
doi:10.1109/TMTT.2006.869719

8. Davenport, Jr., W. B. and W. L. Root, Random Signals and Noise, McGraw-Hill, New York, 1958.

9. Pozar, D. M., Microwave Engineering, 3rd Edition, John Wiley & Sons Inc., 2005.