Vol. 61
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-09-12
Finite-Difference Frequency-Domain Algorithm for Modeling Electromagnetic Scattering from General Anisotropic Objects
By
Progress In Electromagnetics Research B, Vol. 61, 55-67, 2014
Abstract
The finite-difference frequency-domain (FDFD) method is a very simple and powerful approach for rigorous analysis of electromagnetic structures. It may be the simplest of all methods to implement and is excellent for field visualization and for developing new ways to model devices. This paper describes a simple method for incorporating anisotropic materials with arbitrary tensors for both permittivity and permeability into the FDFD method. The algorithm is benchmarked by comparing transmission and reflection results for an anisotropic guided-mode resonant filter simulated in HFSS and FDFD. The anisotropic FDFD method is then applied to a lens and cloak designed by transformation optics.
Citation
Raymond C. Rumpf, Cesar R. Garcia, Eric A. Berry, and Jay H. Barton, "Finite-Difference Frequency-Domain Algorithm for Modeling Electromagnetic Scattering from General Anisotropic Objects," Progress In Electromagnetics Research B, Vol. 61, 55-67, 2014.
doi:10.2528/PIERB14071606
References

1. Luo, G. Q., W. Hong, Z.-C. Hao, B. Liu, W. D. Li, J. X. Chen, et al. "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology," IEEE Transactions on Antennas and Propagation, Vol. 53, 4035-4043, 2005.
doi:10.1109/TAP.2005.860010        Google Scholar

2. Rumpf, R. C., "Design and optimization of nano-optical elements by coupling fabrication to optical behavior,", University of Central Florida Orlando, Florida, 2006.        Google Scholar

3. Sun, W., K. Liu, and C. A. Balanis, "Analysis of singly and doubly periodic absorbers by frequency-domain finite-difference method," IEEE Transactions on Antennas and Propagation, Vol. 44, 798-805, 1996.
doi:10.1109/8.509883        Google Scholar

4. Wu, S.-D. and E. N. Glytsis, "Volume holographic grating couplers: Rigorous analysis by use of the finite-difference frequency-domain method," Applied Optics, Vol. 43, 1009-1023, 2004.
doi:10.1364/AO.43.001009        Google Scholar

5. Shin, W. and S. Fan, "Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell's equations solvers," Journal of Computational Physics, Vol. 231, 3406-3431, 2012.
doi:10.1016/j.jcp.2012.01.013        Google Scholar

6. Shin, W. and S. Fan, "Accelerated solution of the frequency-domain Maxwell's equations by engineering the eigenvalue distribution of the operator," Optics Express, Vol. 21, 22578-22595, 2013.
doi:10.1364/OE.21.022578        Google Scholar

7. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006        Google Scholar

8. Takayama, O., L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, "Dyakonov surface waves: A review," Electromagnetics, Vol. 28, 126-145, 2008.
doi:10.1080/02726340801921403        Google Scholar

9. Figotin, A. and I. Vitebskiy, "Slow-wave resonance in periodic stacks of anisotropic layers," Physical Review A, Vol. 76, 053839, 2007.
doi:10.1103/PhysRevA.76.053839        Google Scholar

10. Schurig, D., J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, et al. "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628        Google Scholar

11. Kwon, D.-H. and D. H. Werner, "Polarization splitter and polarization rotator designs based on transformation optics," Optics Express, Vol. 16, 18731-18738, 2008.
doi:10.1364/OE.16.018731        Google Scholar

12. Al-Barqawi, H., N. Dib, and M. Khodier, "A two-dimensional full-wave finite-difference frequency-domain analysis of ferrite loaded structures," International Journal of Infrared and Millimeter Waves, Vol. 29, 443-456, 2008.
doi:10.1007/s10762-008-9349-6        Google Scholar

13. Loke, V. L., T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "FDFD/T-matrix hybrid method," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 106, 274-284, 2007.
doi:10.1016/j.jqsrt.2007.01.040        Google Scholar

14. Mielewski, J., A. Cwikla, and M. Mrozowski, "Analysis of shielded anisotropic dielectric resonators using FDFD and the Arnoldi method," 12th International Conference on Microwaves and Radar MIKON'98, 335-339, 1998.
doi:10.1109/MIKON.1998.740799        Google Scholar

15. Pinheiro, H. F., A. J. Giarola, and C. L. D. S. S. Sobrinho, "Dispersion characteristics of asymmetric coupled anisotropic dielectric waveguides using FDFD," International Journal of Infrared and Millimeter Waves, Vol. 16, 1965-1975, 1995.
doi:10.1007/BF02072551        Google Scholar

16. Rappaport, C. M. and B. J. McCartin, "FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes," IEEE Transactions on Antennas and Propagation, Vol. 39, 345-349, 1991.
doi:10.1109/8.76332        Google Scholar

17. Rappaport, C. M. and E. Smith, "Anisotropic FDFD computed on conformal meshes," IEEE Transactions on Magnetics, Vol. 27, 3848-3851, 1991.
doi:10.1109/20.104941        Google Scholar

18. Zhao, Y.-J., K.-L. Wu, and K.-K. Cheng, "A compact 2-D full-wave finite-difference frequency-domain method for general guided wave structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 1844-1848, 2002.
doi:10.1109/TMTT.2002.800447        Google Scholar

19. Chen, M.-Y., S.-M. Hsu, and H.-C. Chang, "A finite-difference frequency-domain method for full-vectroial mode solutions of anisotropic optical waveguides with arbitrary permittivity tensor," Optics Express, Vol. 17, 5965-5979, 2009.
doi:10.1364/OE.17.005965        Google Scholar

20. Lavranos, C., G. Kyriacou, and J. Sahalos, "A 2-D finite difference frequency domain (FDFD) eigenvalue method for orthogonal curvilinear coordinates," PIERS Proceedings, 397-400, PISA, Italy, Mar. 28-31, 2004.        Google Scholar

21. Pereda, J. A., A. Vegas, and A. Prieto, "An improved compact 2D full-wave FDFD method for general guided wave structures," Microwave and Optical Technology Letters, Vol. 38, 331-335, 2003.
doi:10.1002/mop.11052        Google Scholar

22. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803        Google Scholar

23. Taflove, A. and S. C. Hagness, Computational Electrodynamics, Vol. 160, Artech House Boston, 2000.

24. Umashankar, K. and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Transactions on Electromagnetic Compatibility, 397-405, 1982.
doi:10.1109/TEMC.1982.304054        Google Scholar

25. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159        Google Scholar

26. Margengo, E., C. M. Rappaport, and E. L. Miller, "Optimum PML ABC conductivity profile in FDFD," IEEE Transactions on Magnetics, Vol. 35, 1506-1509, 1999.
doi:10.1109/20.767253        Google Scholar

27. Sacks, Z. S., D. M. Kingsland, R. Lee, and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, 1460-1463, 1995.
doi:10.1109/8.477075        Google Scholar

28. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693        Google Scholar

29. Jordán, K., Calculus of Finite Differences, American Mathematical Soc., 1965.

30. Rumpf, R. C., C. R. Garcia, H. H. Tsang, J. E. Padilla, and M. D. Irwin, "Electromagnetic isolation of a microstrip by embedding in a spatially variant anisotropic metamaterial," Progress In Electromagnetics Research, Vol. 142, 243-260, 2013.
doi:10.2528/PIER13070308        Google Scholar

31. Horn, A., "Doubly stochastic matrices and the diagonal of a rotation matrix," Amer. J. Math, Vol. 76, 620-630, 1954.
doi:10.2307/2372705        Google Scholar

32. Magnusson, R. and S. Wang, "New principle for optical filters," Applied Physics Letters, Vol. 61, 1022-1024, 1992.
doi:10.1063/1.107703        Google Scholar

33. Barton, J. H., R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, "All-dielectric frequency selective surfaces with few number of periods," Progress In Electromagnetics Research B, Vol. 41, 269-283, 2012.
doi:10.2528/PIERB12042404        Google Scholar

34. Boonruang, S., A. Greenwell, and M. Moharam, "Multiline two-dimensional guided-mode resonant filters," Applied Optics, Vol. 45, 5740-5747, 2006.
doi:10.1364/AO.45.005740        Google Scholar

35. Pung, A. J., S. R. Carl, I. R. Srimathi, and E. G. Johnson, "Method of fabrication for encapsulated polarizing resonant gratings," IEEE Photonics Technology Letters, Vol. 25, 1432-1434, 2013.
doi:10.1109/LPT.2013.2266575        Google Scholar

36. Tibuleac, S. and R. Magnusson, "Re°ection and transmission guided-mode resonance filters," JOSA A, Vol. 14, 1617-1626, 1997.
doi:10.1364/JOSAA.14.001617        Google Scholar

37. Garcia, C. R., J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, and V. Gonzalez, "3D printing of anisotropic metamaterials," Progress In Electromagnetics Research Letters, Vol. 34, 75-82, 2012.
doi:10.2528/PIERL12070311        Google Scholar

38. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493        Google Scholar

39. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907        Google Scholar

40. Ward, A. and J. Pendry, "Refraction and geometry in Maxwell's equations," Journal of Modern Optics, Vol. 43, 773-793, 1996.
doi:10.1080/09500349608232782        Google Scholar

41. Landau, L. D. and E. M. Lifshits, The Classical Theory of Fields, Vol. 2, Butterworth-Heinemann, 1975.

42. Post, E. J., Formal Structure of Electromagnetics: General Covariance and Electromagnetics, Courier Dover Publications, 1997.

43. Kwon, D.-H. and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends ," New Journal of Physics, Vol. 10, 115023, 2008.
doi:10.1088/1367-2630/10/11/115023        Google Scholar

44. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28        Google Scholar