Vol. 38
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-09-10
Casimir Force in Anisotropic Materials with ac Kerr Effect
By
Progress In Electromagnetics Research M, Vol. 38, 165-173, 2014
Abstract
The Casimir force between an ellipsoid and a plate can be tuned by using the combination of anisotropic materials and nonlinear materials exhibiting the AC Kerr effect. The force was obtained numerically by using the FDTD method, based on the Maxwell's stress tensor. The results indicate that the force can be significantly varied by changing the intensity and location of the laser, as well as the properties of material. The sensitive changing between ellipsoid and plate structure with different materials' properties provides new possibilities of integrating optical devices into nano-electro-mechanical systems (NEMS).
Citation
Jun Long Zhang, Zhi-Xiang Huang, and Xian-Liang Wu, "Casimir Force in Anisotropic Materials with ac Kerr Effect," Progress In Electromagnetics Research M, Vol. 38, 165-173, 2014.
doi:10.2528/PIERM14072111
References

1. Casimir, H. B. G., "On the attraction between two perfectly conducting plates," Proc. K. Ned. Akad. Wet., Vol. 51, 793-795, 1948.

2. Atkins, P. R., Q. I. Dai, W. E. I. Sha, and W. C. Chew, "Casimir force for arbitrary objects using the argument principle and boundary element methods," Progress In Electromagnetics Research, Vol. 142, 615-624, 2013.
doi:10.2528/PIER13082105

3. Bordag, M., U. Mohideen, and V. M. Mostepaneko, "New developments in the Casimir effect," Phys. Rep., Vol. 353, No. 1, 2001.

4. Klimchitskaya, G. L., U. Mohidden, and V. M. Mostepanenko, "Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals," Phys. Rev. A, Vol. 61, 062107, 2000.
doi:10.1103/PhysRevA.61.062107

5. Rodriguez, A., M. Ibanescu, D. Iannuzzi, F. Capasso, J. D. Joannopoulos, and S. G. Johnson, "Computation and visualization of casimir forces in arbitrary geometries: Nonmonotonic lateralwall forces and the failure of proximity-force approximations," Phys. Rev. Lett., Vol. 99, 080401, 2007.
doi:10.1103/PhysRevLett.99.080401

6. Rahi, S. J., M. Kardar, and T. Emig, "Constraints on stable equilibria with fluctuation-induced (Casimir) forces," Phys. Rev. Lett., Vol. 105, 070404, 2010.
doi:10.1103/PhysRevLett.105.070404

7. Lambrecht, A. and V. N. Marachevsky, "Casimir interaction of dielectric gratings," Phys. Rev. Lett., Vol. 101, 160403, 2008.
doi:10.1103/PhysRevLett.101.160403

8. Yang, Y., R. Zeng, H. Chen, S. Zhu, and M. S. Zubairy, "Controlling the Casimir force via the electromagnetic properties of materials," Phys. Rev. A, Vol. 81, 022114, 2010.
doi:10.1103/PhysRevA.81.022114

9. Serry, F. M., D. Walliser, and G. J. Maclay, "The role of the Casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS)," J. Appl. Phys., Vol. 84, 2501, 1998.
doi:10.1063/1.368410

10. De Los Santos, H. J., "Nanoelectromechanical quantum circuits and systems," Proc. IEEE., Vol. 91, 1907, 2003.
doi:10.1109/JPROC.2003.818321

11. Chan, H. B., V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, "Nonlinear micromechanical casimir oscillator," Phys. Rev. Lett., Vol. 87, 211801, 2001.
doi:10.1103/PhysRevLett.87.211801

12. Capasso, F., J. N. Munday, D. Iannuzzi, and H. B. Chan, "Casimir forces and quantum electrodynamical torques: Physics and nanomechanics," IEEE. J. Quantum. Electron., Vol. 13, 400, 2007.
doi:10.1109/JSTQE.2007.893082

13. Levin, M., A. P. McCauley, A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, "Casimir repulsion between metallic objects in vacuum," Phys. Rev. Lett., Vol. 105, 090403, 2010.
doi:10.1103/PhysRevLett.105.090403

14. Munday, J. N., F. Capasso, and V. A. Parsegian, "Measured long-range repulsive Casimir-Lifshitz forces," Nature, Vol. 457, 170-173, 2009.
doi:10.1038/nature07610

15. Chen, R. P. and C. H. R. Ooi, "Evolution and collapse of a Lorentz beam in kerr medium," Progress In Electromagnetics Research, Vol. 121, 39-52, 2011.
doi:10.2528/PIER11081712

16. Ooi, C. H. R. and Y. Y. Khoo, "Controlling the repulsive Casimir force with the optical Kerr effect," Phvs. Rev. A, Vol. 86, 062509, 2012.
doi:10.1103/PhysRevA.86.062509

17. Huang, Z. X., T. Koschny, and C. M. Soukoulis, "Theory of pump-probe experiments of metallic metamaterials coupled to the gain medium," Phys. Rev. Lett.,, Vol. 108, 187402, 2012.
doi:10.1103/PhysRevLett.108.187402

18. Rodriguez, A. W., M. Ibanescu, D. Iannuzzi, J. D. Joannopoulos, and S. G. Johnson, "Virtual photons in imaginary time: Computing exact Casimir forces via standard numericalelectromagnetism techniques," Phys. Rev. A, Vol. 76, 032106, 2007.
doi:10.1103/PhysRevA.76.032106

19. Rodriguez, A. W., A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, "Casimir forces in the time domain: Theory," Phys. Rev. A, Vol. 80, 012115, 2009.
doi:10.1103/PhysRevA.80.012115

20. Brown, L. S. and G. J. Maclay, "Vacuum stress between conducting plates: An image solution," Phys. Rev. A, Vol. 184, 1272, 1969.
doi:10.1103/PhysRev.184.1272