Vol. 48
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-09-07
Wideband Planar Printed Quasi-Yagi Antenna with Band-Notched Characteristic
By
Progress In Electromagnetics Research Letters, Vol. 48, 137-143, 2014
Abstract
A wideband planar printed quasi-Yagi antenna with band-notched characteristic is presented. The proposed antenna consists of a microstrip-to-slotline transition structure, a gradient driver dipole, and two parasitic strips as directors. Meanwhile, the arms of the driver and two directors are rotated in a certain angle to improve gain. Employing a microstrip-to-slotline transition, a driver dipole and two parasitic strips, the proposed antenna achieves a wide bandwidth for ultra-wideband applications. The driver dipole is connected to the slotline with a coplanar stripline. To avoid the frequency interference from WLAN operating in the frequency band from 5.15 GHz to 5.825 GHz, an L-shape slot etched on the driver dipole element is adopted to achieve notched band ranging from 4.8 GHz to 6.1 GHz. The ground plane is symmetrically added two stubs to implement the lateral size reduction. The measured bandwidth, determined by the reflection coefficient less than -10 dB, covers from 3 GHz to 10.8 GHz. Better than 8.1 dB F/B ratio and the measured antenna gain varying between 4.7 and 8.3 dBi are also achieved in the operating bandwidth excepting in the notched band.
Citation
Shaoshuai Zhang, Zhaoyang Tang, and Yingzeng Yin, "Wideband Planar Printed Quasi-Yagi Antenna with Band-Notched Characteristic," Progress In Electromagnetics Research Letters, Vol. 48, 137-143, 2014.
doi:10.2528/PIERL14072507
References

1. Avila-Navarro, E., A. Segarra-Martinez, J. A. Carrasco, and C. Reig, "A low-cost compact uniplanar quasi-Yagi printed antenna," Microwave Opt. Technol. Lett., Vol. 50, No. 3, 731-735, Mar. 2008.
doi:10.1002/mop.23197

2. Huang, J. and A. C. Densmore, "Microstrip Yagi array antenna for mobile satellite vehicle application," IEEE Trans. Antennas Propag., Vol. 39, No. 7, 1024-1030, Jul. 1991.
doi:10.1109/8.86924

3. Rashidian, A., L. Shafai, and D. M. Klymyshyn, "Compact wideband multimode dielectric resonator antennas fed with parallel standing strips," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5021-5031, Nov. 2012.
doi:10.1109/TAP.2012.2210018

4. Kan, H., R. Waterhouse, A. Abbosh, and M. Bialkowski, "Simple broadband planar CPW-fed quasi-Yagi antenna," IEEE Antennas Wireless Propagt. Lett., Vol. 6, 18-20, Jul. 2007.
doi:10.1109/LAWP.2006.890751

5. Wang, H., S.-F. Liu, W.-T. Li, and X.-W. Shi, "Design of a wideband planar microstrip-fed quasi-Yagi antenna," Progress In Electromagnetics Research Letters, Vol. 46, 19-24, 2014.
doi:10.2528/PIERL14031702

6. Jiang, K., Q. G. Guo, and K. M. Huang, "Design of a wideband quasi-Yagi microstrip antenna with bowtie active elements," Int. Conf. on Microwave and Millimeter Wave Technology, 1122-1124, May 2010.

7. Han, K., Y. Park, H. Choo, and I. Park, "Broadband CPS-fed Yagi-Uda antenna," Electron. Lett., Vol. 45, No. 24, 1207-1209, Nov. 2009.
doi:10.1049/el.2009.1330

8. Woo, D., Y. Kim, W. Kim, and Y. Cho, "Design of quasi-Yagi antennas using an ultra-wideband balun," Microwave Opt. Technol. Lett., Vol. 50, No. 8, 2068-2071, Aug. 2008.
doi:10.1002/mop.23563

9. Deal, W. R., N. Kaneda, J. Sor, Y. Qian, and T. Itoh, "A new quasi-Yagi antenna for planar active antenna arrays," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 6, 910-918, Jun. 2000.
doi:10.1109/22.846717

10. Rakluea, P. and J. Nakasuwan, "Planar UWB antenna with single band-notched characteristic," Int. Conf. on Control, Automation and Systems, 1978-1981, 2010.

11. Zamel, H. M., A. M. Attiya, and E. A. Hashish, "Design of a compact UWB planar antenna with band-notch characterization," National Radio Science Conference, 1-8, 2007.

12. Fallahi, R., A.-A. Kalteh, and M. G. Roozbahani, "A novel UWB elliptical slot antenna with band-notched characteristics," Progress In Electromagnetics Research, Vol. 82, 127-136, 2008.
doi:10.2528/PIER08022603

13. Medeiros, C. R., J. R. Costa, and C. A. Fernandes, "UWB crossed exponentially tapered slot antenna with WLAN band rejection," IEEE Antennas and Propagation Society International Symposium, 1-4, 2009.

14. Wu, J., Z. Zhao, Z. Nie, and Q.-H. Liu, "Bandwidth enhancement of a planar printed quasi-Yagi antenna with size reduction," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 463-467, Jan. 2014.
doi:10.1109/TAP.2013.2287286