1. Grover, F. W., "The calculation of the mutual inductance of circular filaments in any desired positions," Proceedings of the IRE, 620-629, Oct. 1944. Google Scholar
2. Snow, C., Formulas for Computing Capacitance and Inductance, Series: NBS circular 544, National Bureau of Standards, Washington, DC, Dec. 1954.
3. Dwight, H. B., Electrical Coils and Conductors, McGraw-Hill Book Company, Inc., New York, 1945.
4. Babic, S. I. and C. Akyel, "New analytic-numerical solutions for the mutual inductance of two coaxial circular coils with rectangular cross section in air," IEEE Trans. Mag., Vol. 42, No. 6, 1661-1669, Jun. 2006.
doi:10.1109/TMAG.2006.872626 Google Scholar
5. Babic, S. I. and C. Akyel, "Calculating mutual inductance between circular coils with inclined axes in air," IEEE Trans. Mag., Vol. 44, No. 7, 1743-1750, Jul. 2008.
doi:10.1109/TMAG.2008.920251 Google Scholar
6. Babic, S. I., F. Sirois, C. Akyel, and C. Girardi, "Mutual inductance calculation between circular filaments arbitrarily positioned in space: Alternative to Grover’s formulas," IEEE Trans. Mag., Vol. 46, No. 9, 3591-3600, Sep. 2010.
doi:10.1109/TMAG.2010.2047651 Google Scholar
7. Akyel, C., S. I. Babic, and M. M. Mahmoudi, "Mutual inductance calculation for non-coaxial circular air coils with parallel axes," Progress In Electromagnetics Research, Vol. 91, 287-301, 2009.
doi:10.2528/PIER09021907 Google Scholar
8. Babic, S. I., F. Sirois, and C. Akyel, "Validity check of mutual inductance formulas for circular filaments with lateral and angular misalignments," Progress In Electromagnetics Research M, Vol. 8, 15-26, 2009.
doi:10.2528/PIERM09060105 Google Scholar
9. Conway, J. T., "Noncoaxial inductance calculations without the vector potential for axysimmetric coil and a planar coil," IEEE Trans. Mag., Vol. 44, No. 4, 453-462, Apr. 2008.
doi:10.1109/TMAG.2008.917128 Google Scholar
10. Conway, J. T., "Inductance calculations for noncoaxial coils using bessel functions," IEEE Trans. Mag., Vol. 43, No. 3, 1023-1034, Mar. 2007.
doi:10.1109/TMAG.2006.888565 Google Scholar
11. Conway, J. T., "Inductance calculations for coils of rectangular cross section using bessel and struve functions," IEEE Trans. Mag., Vol. 46, No. 1, 75-81, Jan. 2010.
doi:10.1109/TMAG.2009.2026574 Google Scholar
12. Babic, S. I., C. Akyel, F. Sirois, G. Lemarquand, R. Ravaud, and V. Lemarquand, "Calculation of the mutual inductance and the magnetic force between a thick circular coil of the rectangular cross section and a thin wall solenoid (integro-differential approach)," Progress In Electromagnetics Research B, Vol. 33, 221-237, 2011.
doi:10.2528/PIERB11062111 Google Scholar
13. Conway, J. T., "Mutual inductance between thin coils with parallel axes,", Private Communication, Jun. 2011. Google Scholar
14. Kamon, M., M. J. Tsuk, and J. White, "FASTHENRY: A multipole accelerated 3D inductance extraction program," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 9, 1750-1758, Sep. 1994.
doi:10.1109/22.310584 Google Scholar
15. Zeirhofer, C. M. and E. S. Hochmair, "Geometric approach for coupling enhancement of magnetically coupled coils," IEEE Trans. Biomed. Eng., Vol. 43, No. 7, 708-714, Jul. 1996.
doi:10.1109/10.503178 Google Scholar
16. Puers, R., K. Van Schuylenbergh, M. Catrysse, and B. Hermans, "Wireless inductive transfer of power and data," Analog Circuit Design, 395-414, Springer, The Netherlands, 2006, ISBN: 978-1-4020-3884-6. Google Scholar
17. Soma, M., C. D. Galbraith, and R. White, "Radio-frequency coils in implantable devices: Misalignment analysis and design procedure," IEEE Trans. Biomed. Eng., Vol. 34, No. 4, 276-282, 1987.
doi:10.1109/TBME.1987.326088 Google Scholar
18. Fotopoulou, K. and B. W. Flynn, "Wireless power transfer in loosely coupled links: Coil misalignment model," IEEE Trans. Mag., Vol. 44, No. 1, 453-462, Mar. 2011. Google Scholar
19. Jow, U. M. and M. Ghovanloo, "Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission," IEEE Trans. Biom. Circ. Sys., Vol. 1, No. 3, 193-202, Sep. 2007.
doi:10.1109/TBCAS.2007.913130 Google Scholar
20. Kim, J.W., H. C. Son, D. H. Kim, K. H. Kim, and Y. J. Park, "Efficiency of magnetic resonance WPT with two off-axis self-resonators," 2011 IEEE MTT-S. Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), 127-130, 2011. Google Scholar
21. Heetderks, W. J., "RF powering of millimeter and submillimeter-sized neural prosthetic implants," IEEE Trans. Biomed. Eng., Vol. 35, 323-327, May 1988.
doi:10.1109/10.1388 Google Scholar
22. Waters, B., "High Q resonant coupling and RF-DC conversion for wireless power transfer,", http://students.washington.edu/bhw2114/pubs/Inductive Coupling + RF Wireless Power.pdf. Google Scholar
23. Zhong, W. X., C. K. Lee, and S. Y. R. Hui, "Wireless power domino-resonator systems with non-coaxial axes and circular structures," IEEE Trans. on Power Electronics, Vol. 27, No. 11, 4750-4762, Nov. 2012.
doi:10.1109/TPEL.2011.2174655 Google Scholar
24. Zhong, W. X., C. K. Lee, and . Y. R. Hui, "General analysis on the use of Tesla’s resonators in Domino forms for wireless power transfer," IEEE Trans. on Industrial Applications, Vol. 60, No. 1, 261-270, Jan. 2013. Google Scholar
25. Gradshteyn, I. S. and I. M. Rhyzik, Tables of Integrals, Series and Products, Dover, New York, 1972.
26. Abramowitz, M. and I. A. Stegun, "Handbook of Mathematical Functions," Series 55, National Bureau of Standards Applied Mathematics, Washington DC, Dec. 1972. Google Scholar
27. Martinez, J., S. Babic, and C. Akyel, "On evaluation of inductance, DC resistance and capacitance of coaxial inductors at low frequencies," IEEE Trans. Mag., Vol. 50, No. 7, Jul. 2014, Doi: 10.1109/TMAG.2014.2303943. Google Scholar