1. Nikolova, N. K., "Microwave biomedical imaging," Wiley Encyclopedia of Electrical and Electronics Engineering, 1-22, Apr. 2014.
doi:10.1002/047134608X.W8214 Google Scholar
2. Zeng, X., A. Fhager, M. Persson, P. Linner, and H. Zirath, "Accuracy evaluation of ultrawideband time domain systems for microwave imaging," IEEE Trans. Antennas Propag., Vol. 59, No. 11, 4279-4285, Nov. 2011.
doi:10.1109/TAP.2011.2164174 Google Scholar
3. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array-experimental results," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856 Google Scholar
4. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 11, 1841-1853, Nov. 2000. Google Scholar
5. Bourqui, J., J. Garrett, and E. C. Fear, "Measurement and analysis of microwave frequency signals transmitted through the breast," International Journal of Biomedical Imaging, Vol. 2012, 1-11, Article ID 562563, 2012. Google Scholar
6. Porter, E., E. Kirshin, A. Santorelli, M. Coates, and M. Popović, "Time-domain multistatic radar system for microwave breast screening," IEEE Antennas Wireless Propag. Lett., Vol. 12, 229-232, 2013.
doi:10.1109/LAWP.2013.2247374 Google Scholar
7. Kanj, H. and M. Popović, "A novel ultra-compact broadband antenna for microwave breast tumor detection," Progress In Electromagnetics Research, Vol. 86, 169-198, 2008.
doi:10.2528/PIER08090701 Google Scholar
8. Yoon, H. K., W. S. Kang, Y. J. Yoon, and C.-H. Lee, "A flexible UWB antenna attachable to various kinds of materials," Proc. IEEE International Conference on Ultra-Wideband (ICUWB), 204-209, Singapore, Sep. 24–26, 2007. Google Scholar
9. Peter, T. and R. Nilavan, "A study on the performance deterioration of flexible UWB antennas," Proc. Loughborough Antennas & Propagation Conf., 669-672, Loughborough, UK, Nov. 16–17, 2009. Google Scholar
10. Karacolak, T. and E. Topsakal, "A double-sided rounded bow-tie antenna (DSRBA) for UWB communication," IEEE Antennas Wireless Propag. Lett., Vol. 5, 446-449, 2006.
doi:10.1109/LAWP.2006.885013 Google Scholar
11. Nikolaou, S., D. E. Anagnostou, G. E. Ponchak, M. M. Tentzeris, and J. Papapolymerou, "Compact ultra wide-band (UWB) CPW-fed elliptical monopole on liquid crystal polymer (LCP)," Proc. IEEE Antennas and Propagation Society International Symposium, 4657-4660, Jul. 9–14, 2006. Google Scholar
12. Sugitani, T., S. Kubota, A. Toya, X. Xiao, and T. Kikkawa, "A compact 4×4 planar UWB antenna array for 3-D breast cancer detection," IEEE Antennas Wireless Propag. Lett., Vol. 12, 733-736, 2013.
doi:10.1109/LAWP.2013.2270933 Google Scholar
13. Bassi, M., M. Caruso, M. S. Khan, A. Bevilacqua, A.-D. Capobianco, and A. Neviani, "An integrated microwave imaging radar with planar antennas for breast cancer detection," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 5, 2108-2118, May 2013.
doi:10.1109/TMTT.2013.2247052 Google Scholar
14. Santorelli, A., M. Chudzik, E. Kirshin, E. Porter, A. Lujambio, I. Arnedo, M. Popović, and J. D. Schwartz, "Experimental demonstration of pulse shaping for time-domain microwave breast imaging," Progress In Electromagnetics Research, Vol. 133, 309-329, 2013.
doi:10.2528/PIER12091008 Google Scholar
15. Bourqui, J., M. Okoniewskiand, and E. C. Fear, "Balanced antipodal vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2318-2326, Jul. 2010.
doi:10.1109/TAP.2010.2048844 Google Scholar
16. Tiang, S. S., M. Sadoon, T. F. Zanoon, M. F. Ain, and M. Z. Abdullah, "Radar sensing featuring biconical antenna and enhanced delay and sum algorithm for early stage breast cancer detection," Progress In Electromagnetics Research B, Vol. 46, 299-316, 2013.
doi:10.2528/PIERB12102201 Google Scholar
17. Moussakhani, K., R. K. Amineh, and N. K. Nikolova, "High-efficiency TEM horn antenna for ultra-wide band microwave tissue imaging," Proc. 2011 IEEE International Symp. Antennas and Propagation (AP-S), 127–130, Spokane, Washington, USA, Jul. 3–8, 2011. Google Scholar
18. Craddock, I. J., M. Klemm, J. Leendertz, A. W. Preece, and R. Benjamin, "An improved hemispherical antenna array design for breast imaging," Proc. 2nd European Conference on Antennas and Propagation (EUCAP), 1-5, Edinburgh, Scotland, Nov. 11–16, 2007. Google Scholar
19. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues III: Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271-2293, Nov. 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
20. Lazebnik, M., M. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001 Google Scholar
21. Garrett, J. and E. Fear, "Stable and flexible materials to mimic the dielectric properties of human soft tissues," IEEE Antennas Wireless Propag. Lett., Vol. 13, 599-602, 2014.
doi:10.1109/LAWP.2014.2312925 Google Scholar