Vol. 51
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-02-26
Experimental Study of a Low-Cost Radiometer for Hostile Scenarios
By
Progress In Electromagnetics Research Letters, Vol. 51, 119-125, 2015
Abstract
Noncontact temperature measurements in industrial scenarios present great variety of difficulties (dust, vapor...). In this work, the authors study the use of a low-cost microwave power radiometers to measure the temperature of hot metal plate during its cooling with water. Two different radiometer, centred at different frequency bands, have been experimentally considered. The radiometers have been surrounded with a metal box to reduce undesirable radiation. Several experiments have been carried out, showing the ability of these radiometers to detect the cooling of the plates. A recalibration of the radiometers gain can be done to compensate the gain variation of the circuitry of the radiometers.
Citation
German Leon Fernandez, and Angel G. Martino, "Experimental Study of a Low-Cost Radiometer for Hostile Scenarios," Progress In Electromagnetics Research Letters, Vol. 51, 119-125, 2015.
doi:10.2528/PIERL14102105
References

1. Skou, N. and D. Le Vine, Microwave Radiometer Systems, Design and Analysis, 2nd Edition, Artech House, 2006.

2. Pujara, D., S. B. Sharma, and S. B. Chakrabarty, "Historical and planned uses of antenna technology for space-borne microwave radiometers," IEEE Antennas and Propag. Mag., Vol. 53, No. 3, 95-114, June 2011.
doi:10.1109/MAP.2011.6028425

3. Dubois, L., J.-P. Sozanski, V. Tessier, J.-C. Camart, J.-J. Fabre, J. Pribetichand, and M. Chive, "Temperature control and thermal dosimetry by microwave radiometry in hypertermia," IEEE Trans. on Microw. Theory and Tech., Vol. 44, No. 10, October 1996.

4. Klemetsen, A., Y. Birkelund, and S. K. Jacobsen, "Design of medical radiometer front-end for improved performance," Progress In Electromagnetics Research B, Vol. 27, 289-306, 2011.
doi:10.2528/PIERB10101204

5. Beaucamp-Ricard, C., L. Dubois, S. Vaucher, P.-Y. Cresson, T. Lasri, and J. Pribetich, "Temperature measurement by microwave radiometry: Application to microwave sintering," IEEE Trans. On InstrumMeasur., Vol. 58, No. 5, 1712-1719, May 2009.
doi:10.1109/TIM.2008.2009189

6. Stephan, K. D., J. B. Mead, D. M. Pozar, L. Wang, and J. A. Pearce, "A near field focused microstrip array for a radiometric temperature sensor," IEEE Trans Antenna Propag., Vol. 55, No. 4, 1199-1203, April 2007.
doi:10.1109/TAP.2007.893429

7. Stephan, K. D. and J. A. Pearce, "Low-cost remote temperature sensor for microwave and rf heating using microwave radiometry," Journal of Microwave Power & Electromagnetic Energy, Vol. 37, No. 2, 113-124, 2002.

8. Chen, J., Y. Li, , J. Wang, Y. Li, and Y. Zhang, "An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field," Progress In Electromagnetics Research, Vol. 141, 517-535, 2013.
doi:10.2528/PIER13060702

9. Mishra, P., A. Upadhyaya, and G. Sethi, "Modeling of microwave heating of particulate metals," Metallurgical and Materials Transactions B, Vol. 37, No. 5, 839-845, October 2006.
doi:10.1007/s11663-006-0066-z