Vol. 50
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-12-18
A Compact Four-Element UWB MIMO Antenna with Qsca Implementation
By
Progress In Electromagnetics Research Letters, Vol. 50, 103-109, 2014
Abstract
In this paper, a new approach using quasi-self-complementary antenna (QSCA) to reduce the wideband mutual coupling is proposed and discussed. QSCA element proposed in this paper is composed of a semi-circular radiation patch and a complementary-cut ground plane, which is easy to achieve ultra-wideband operation because its impedance is frequency independent. The proposed compact four-element ultra-wideband (UWB) multiple-input multiple-output (MIMO) array consists of four QSCA elements, and by arranging them anticlockwise, a good impedance matching and high port-to-port isolation (|S11| covers 2.95-12.1 GHz with |S21| = |S31|≤-15 dB, |S41|≤-17.8 dB) can be achieved. Notably, the isolation is obtained without using any other decoupling methods and totally benefits from the asymmetrical radiation property of QSCA. As an example, the proposed four-element UWB MIMO array is fabricated and tested. And the measured radiation pattern, gains and total efficiencies are displayed and show good performances which make it a nice candidate for future UWB diversity applications.
Citation
Jian-Feng Yu, Xianglong Liu, Xiao-Wei Shi, and Zedong Wang, "A Compact Four-Element UWB MIMO Antenna with Qsca Implementation," Progress In Electromagnetics Research Letters, Vol. 50, 103-109, 2014.
doi:10.2528/PIERL14110804
References

1. Foschini, G. J., "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas," Bell Labs Technical Journal, 41-59, 1996.

2. "Federal communications commission revision of Part 15 of the commission’s rules regarding ultra-wideband transmission system from 3.1 to 10.6GHz,", ET Docket No. 98-153, Federal Communications Commission, Washington, DC, 2002.

3. Kaiser, T., F. Zheng, and E. Dimitrov, "An overview of ultra-wide-band systems with MIMO," Proc. of the IEEE, Vol. 97, No. 2, 285-312, 2009.
doi:10.1109/JPROC.2008.2008784

4. Zhang, S., B. K. Lau, A. Sunesson, and S. L. He, "Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4372-4380, 2012.
doi:10.1109/TAP.2012.2207049

5. Hong, S., K. Chung, J. Lee, S. Jung, S.-S. Lee, and J. Choi, "Design of a diversity antenna with stubs for UWB applications," Microw. Opt. Technol. Lett., Vol. 50, No. 5, 1352-1356, 2008.
doi:10.1002/mop.23389

6. Zhang, S., Z.-N. Ying, J. Xiong, and S.-L. He, "Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1279-1282, 2009.
doi:10.1109/LAWP.2009.2037027

7. Lee, J.-M., K.-B. Kim, H.-K. Ryu, and J.-M. Woo, "A compact ultrawideband MIMO antenna with WLAN band-rejected operation for mobile devices," IEEE Antennas Wireless Propag. Lett., Vol. 11, 990-993, 2012.

8. Li, J.-F., Q.-X. Chu, and T.-G. Huang, "A compact wideband MIMO antenna with two novel bent slits," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 482-489, 2012.
doi:10.1109/TAP.2011.2173452

9. See, T. S. P. and Z. N. Chen, "An ultrawideband diversity antenna," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1597-1605, 2009.
doi:10.1109/TAP.2009.2019908

10. Mushiake, Y., "Self complementary antenna," IEEE Antennas and Propagation Magazine, Vol. 34, No. 6, 23-29, 1992.
doi:10.1109/74.180638

11. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communication," IEEE Trans. Veh. Technol., Vol. 36, No. 4, 149-172, 1987.
doi:10.1109/T-VT.1987.24115

12. Ding, Y., Z. W. Du, K. Gong, and Z. H. Feng, "A novel dual-band printed diversity antenna for mobile terminals," IEEE Trans. Antennas Propag., Vol. 55, No. 7, 2088-2096, 2007.
doi:10.1109/TAP.2007.900249

13. Karaboikis, M. P., V. C. Papamichael, G. F. Tsachtsiris, and V. T. Makios, "Integrating compact printed antennas onto small diversity/MIMO terminals," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2067-2078, 2008.
doi:10.1109/TAP.2008.924677