1. Tassin, P., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics," Nature Photonics, Vol. 6, No. 4, 259-264, 2012.
doi:10.1038/nphoton.2012.27 Google Scholar
2. Kauranen, M. and A. V. Zayats, "Nonlinear plasmonics," Nature Photonics, Vol. 6, 737-748, 2012.
doi:10.1038/nphoton.2012.244 Google Scholar
3. Politano, A., "Interplay of structural and temperature effects on plasmonic excitations at noblemetal interfaces," Philosophical Magazine, Vol. 92, No. 6, 768-778, 2012.
doi:10.1080/14786435.2011.634846 Google Scholar
4. Politano, A., A. R. Marino, V. Formoso, D. Farias, R. Miranda, and G. Chiarello, "Quadratic dispersion and damping processes of π plasmon in monolayer graphene on Pt(111)," Plasmonics, Vol. 7, No. 2, 369-376, 2012.
doi:10.1007/s11468-011-9317-1 Google Scholar
5. Politano, A., V. Formoso, and G. Chiarello, "Collective electronic excitations in thin Ag films on Ni(111)," Plasmonics, Vol. 8, No. 4, 1683-1690, 2013.
doi:10.1007/s11468-013-9587-x Google Scholar
6. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, No. 17, 8215-8220, 2013.
doi:10.1039/c3nr02027d Google Scholar
7. Politano, A. and G. Chiarello, "Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices," Applied Physics Letters, Vol. 102, No. 20, 201608, 2013.
doi:10.1063/1.4804189 Google Scholar
8. Yan, H. G., X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, "Tunable infrared plasmonic devices using graphene/insulator stacks," Nature Nanotechnology, Vol. 7, No. 5, 330, 2012.
doi:10.1038/nnano.2012.59 Google Scholar
9. Zheludev, N. I., "Photonic-plasmonic devices: A 7-nm light pen makes its mark," Nature Nanotechnology, Vol. 5, No. 1, 10-11, 2010.
doi:10.1038/nnano.2009.460 Google Scholar
10. Politano, A., "Influence of structural and electronic properties on the collective excitations of Ag/Cu(111)," Plasmonics, Vol. 7, No. 1, 131-136, 2012.
doi:10.1007/s11468-011-9285-5 Google Scholar
11. He, X. Y., Q. J. Wang, and S. F. Yu, "Numerical study of gain-assisted terahertz hybrid plasmonic waveguide," Plasmonics, Vol. 7, No. 3, 571-577, 2012.
doi:10.1007/s11468-012-9344-6 Google Scholar
12. Okamoto, K., I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Material, Vol. 3, No. 9, 601-605, 2004.
doi:10.1038/nmat1198 Google Scholar
13. Reineck, P., G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, "A solid-state plasmonic solar cell via metal nanoparticle self-assembly," Advanced Materials, Vol. 24, No. 35, 2012. Google Scholar
14. Yao, X. H., M. Tokman, and A. Belyanin, "Efficient nonlinear generation of THz plasmons in graphene and topological insulators," Physical Review Letters, Vol. 112, No. 5, 055501, 2014.
doi:10.1103/PhysRevLett.112.055501 Google Scholar
15. Lu, L., B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, "Graphene plasmonics for tunable terahertz metamaterials," Nature Nanotechnology, Vol. 6, 630-634, 2011. Google Scholar
16. Takahara, J., S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Optics Letters, Vol. 22, 475-477, 1997.
doi:10.1364/OL.22.000475 Google Scholar
17. Djabery, R., S. Nikmehr, and S. Hosseinzadeh, "Grating effects on sidelobe suppression in MIM plasmonic filters," Progress In Electromagnetics Research, Vol. 135, 271-280, 2013.
doi:10.2528/PIER12102809 Google Scholar
18. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865 Google Scholar
19. Lee, K. H., I. Ahmed, R. S.M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonic applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
doi:10.2528/PIER11042002 Google Scholar
20. Berini, P., "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Physical Review B, Vol. 61, No. 15, 10484-10503, 2000.
doi:10.1103/PhysRevB.61.10484 Google Scholar
21. Weeber, J. C., A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Physical Review B, Vol. 60, No. 12, 9061-9068, 1999.
doi:10.1103/PhysRevB.60.9061 Google Scholar
22. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, Vol. 440, 508-511, 2006.
doi:10.1038/nature04594 Google Scholar
23. Veronis, G. and S. Fan, "Modes of subwavelength plasmonic slot waveguides," Journal of Lightwave Technology, Vol. 25, No. 9, 2511-2521, 2007.
doi:10.1109/JLT.2007.903544 Google Scholar
24. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937 Google Scholar
25. Xu, Y., J. Zhang, and G. F. Song, "Slow surface plasmons in plasmonic grating waveguide," IEEE Photonics Technology Letters, Vol. 25, No. 5, 410-413, Jan. 2013.
doi:10.1109/LPT.2013.2238667 Google Scholar
26. Song, Y., J.Wang, M. Yan, and M. Qiu, "Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter," Journal of Optics, Vol. 13, 2011. Google Scholar
27. Hosseini, A. and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Applied Physics Letters, Vol. 90, 181102, 2007.
doi:10.1063/1.2734380 Google Scholar
28. Liu, J. L., G. Y. Fang, H. F. Zhao, Y. Zhang, and S. T. Liu, "Plasmon flow control at gap waveguide junctions using square ring resonators," Journal of Physics D: Applied Physics, Vol. 43, 055103, 2010.
doi:10.1088/0022-3727/43/5/055103 Google Scholar
29. Veronis, G. and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Applied Physics Letters, Vol. 83, 131102, 2005.
doi:10.1063/1.2056594 Google Scholar
30. Chung, S. Y., C. Y. Wang, C. H. Teng, C. P. Chen, and H. C. Chang, "Simulations of dielectric and plasmonic waveguide-coupled ring resonators using the legendre pseudospectral time-domain method," Journal of Lightwave Technology, Vol. 30, No. 11, 1733-1742, 2012.
doi:10.1109/JLT.2012.2188851 Google Scholar
31. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, 3rd Ed., Artech House, 2005.
32. Lakshmikanthan, V. and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Academic, 1988.
33. Guiaut, C. and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 43, 94-103, 2001. Google Scholar
34. Yu, W., R. Mittra, T. Su, Y. J. Liu, and X. L. Yang, Parallel Finite-difference Time-domain Method, Artech House, 2006.