Vol. 62
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-02-16
Antenna Aperture Localization for Arrival Time Correction Using First-Break
By
Progress In Electromagnetics Research B, Vol. 62, 105-120, 2015
Abstract
For microwave imaging systems that utilize antennas with spatially separated feeds and apertures, arrival time correction based on the antenna aperture location is one of the fundamental steps in radar data processing. The estimates of the antenna aperture time and the corresponding average velocity in the material in contact with the antenna are expected to have a significant impact on the quality of the reconstructed image. In this paper, we propose antenna aperture and average velocity estimation by least-squares regression analysis of the first-breaks. The results indicate that the proposed method is able to process either the reflection data or the transmission data measured by antennas with different structures. Compared to those readily identifiable characteristics in the signal, the first-break is less influenced by waveform distortion and is able to provide more consistent reference. Differences in the images of test objects are also noted.
Citation
Kay Yuhong Liu, Elise C. Fear, and Mike E. Potter, "Antenna Aperture Localization for Arrival Time Correction Using First-Break," Progress In Electromagnetics Research B, Vol. 62, 105-120, 2015.
doi:10.2528/PIERB14121908
References

1. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Q. Fang, C. A. Kogel, et al. "Initial clinical experience with microwave breast imaging in women with normal mammography," Acad. Radiol., Vol. 14, No. 2, 207-218, Feb. 2007.
doi:10.1016/j.acra.2006.10.016

2. Klemm, M., J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Trans. Antennas Propag. Mag., Vol. 58, No. 7, 2337-2344, Apr. 2010.
doi:10.1109/TAP.2010.2048860

3. Persson, M., X. Zeng, and A. Fhager, "Microwave imaging for medical applications," Proceedings of the 5th EUCAP, 3070-3072, 2011.

4. Fear, E. C., J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, "Microwave breast imaging with a monostatic radar-based system: A study of application to patients," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 5, 2119-2128, May 2013.
doi:10.1109/TMTT.2013.2255884

5. Aguilar, S. M., M. A. Al-Joumayly, M. J. Burfeindt, N. Behdad, and S. C. Hagness, "Multiband miniaturized patch antennas for a compact, shielded microwave breast imaging array," IEEE Trans. Antennas Propag. Mag., Vol. 62, No. 3, 1221-1231, Mar. 2014.
doi:10.1109/TAP.2013.2295615

6. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microw. Mag., Vol. 12, No. 7, 78-94, Dec. 2011.
doi:10.1109/MMM.2011.942702

7. Allaby, M., A Dictionary of Earth Sciences, Oxford University Press, UK, 2008.

8. Yilmaz, O., Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data, Society of Exploration Geophysicists, Tulsa, OK, USA, 2001.
doi:10.1190/1.9781560801580

9. Sabbione, J. I. and D. Velis, "Automatic first-breaks picking: New strategies and algorithms," Geophysics, Vol. 75, No. 4, V67-V76, Jul.-Aug. 2010.
doi:10.1190/1.3463703

10. Wong, J., L. Han, J. C. Bancroft, and R. R. Stewart, "Automatic time-picking of first arrivals on noisy microseismic data," CREWES Research Rep., Vol. 21, No. 30, Dec. 2009.

11. Molyneux, J. B. and D. R. Schmitt, "First-break timing: Arrival onset times by direct correlation," Geophysics, Vol. 64, No. 5, 1492-1501, Sep.-Oct. 1999.
doi:10.1190/1.1444653

12. Peraldi, R. and A. Clement, "Digital processing of refraction data study of first arrivals," Geophys. Prospect., Vol. 20, No. 3, 529-548, Sep. 1972.
doi:10.1111/j.1365-2478.1972.tb00653.x

13. Coppens, F., "First arrival picking on common-offset trace collections for automatic estimation of static corrections," Geophys. Prospect., Vol. 33, No. 8, 1212-1231, Dec. 1985.
doi:10.1111/j.1365-2478.1985.tb01360.x

14. Hatherly, P. J., "A computer method for determining seismic first arrival times," Geophysics, Vol. 47, No. 10, 1431-1436, Oct. 1982.
doi:10.1190/1.1441291

15. Han, L., "Microseismic monitoring and hypocenter location,", M.S. Thesis, Dept. GeoSci., Univ. Calgary, Caglary, AB, Canada, 2010.

16. Bourqui, J., "Balanced antipodal Vivaldi antenna and dielectric director for breast cancer detection,", M.S. Thesis, Dept. Elect. Eng., Univ. Calgary, Calgary, AB, Canada, 2008.

17. Taylor, J. R., An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, Measurements, University Science Books, Sausalito, CA , 1982.

18. Bourqui, J. and E. C. Fear, "Shielded UWB sensor for biomedical applications," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1614-1617, Dec. 2012.
doi:10.1109/LAWP.2012.2235814

19. Garrett, J. and E. Fear, "Stable and flexible materials to mimic the dielectric properties of human soft tissues," IEEE Antennas Wireless Propag. Lett., Vol. 13, 599-602, Apr. 2014.
doi:10.1109/LAWP.2014.2312925

20. Bourqui, J. and E. C. Fear, "Biological tissues assessment using transmitted microwave signals," Proceedings of the 8th EUCAP, 77-78, 2014.

21. Ulriksson, B., "Conversion of frequency-domain data to the time domain," Proc. IEEE, Vol. 74, No. 1, 74-77, Jan. 1986.
doi:10.1109/PROC.1986.13405

22. SEMCAD X Reference Guide, Schmid & Partner Engineering AG, Z¨urich, Switzerland, 2012.

23. Ray, P. S., J. J. Stephens, and T. W. Kitterman, "Near-field impulse response examination of backscattering from dielectric spheres," Appl. Opt., Vol. 14, No. 10, 2492-2498, Oct. 1975.
doi:10.1364/AO.14.002492