Vol. 51
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-01-30
A Novel Compact Dual-Wideband Bandpass Filter with Multi-Mode Resonators
By
Progress In Electromagnetics Research Letters, Vol. 51, 79-85, 2015
Abstract
A novel compact dual-wideband bandpass filter (BPF), with two multi-mode resonators (MMRs), a quad-mode one (QMR) and a triple-mode one (TMR), is proposed in this paper. The first passband is generated by a QMR loaded with a short-ended stub and two open-ended stubs, and the second one is realized by a TMR loaded with a square ring and a short-ended stub. Each passband can be tuned separately by controlling the corresponding resonator. The classical even-/odd-mode analysis is applied to characterize the presented MMRs due to their symmetric configurations. In order to validate the design methodology, a dual-wideband BPF prototype centered at 2.34 and 3.46 GHz with fractional bandwidths of 25.6% and 21.4% for WLAN and WiMAX applications is designed, fabricated and measured. Measurements have good agreement with simulations.
Citation
Jun Li, Shan Shan Huang, Hui Wang, and Jian Zhong Zhao, "A Novel Compact Dual-Wideband Bandpass Filter with Multi-Mode Resonators," Progress In Electromagnetics Research Letters, Vol. 51, 79-85, 2015.
doi:10.2528/PIERL14122302
References

1. Guo, L., Z.-Y. Yu, and L. Zhang, "Design of a dual-mode dual-band filter using stepped impedance resonators," Progress In Electromagnetics Research Letters, Vol. 14, 147-154, 2010.
doi:10.2528/PIERL10032601

2. Zhang, S. and L. Zhu, "Synthesis design of dual-band bandpass filters with λ/4 stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 5, 1812-1819, May 2013.
doi:10.1109/TMTT.2013.2256143

3. Li, J., S. S. Huang, and J. Z. Zhao, "Design of a compact and high selectivity tri-band bandpass filter using asymmetric stepped-impedance resonators (SIRs)," Progress In Electromagnetics Research Letters, Vol. 44, 81-86, 2014.
doi:10.2528/PIERL13112502

4. Luo, S., L. Zhu, and S. Sun, "A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, 3427-3432, 2010.

5. Chen, F.-C. and J. M. Qiu, "Third-order dual-band bandpass filter with controllable bandwidths using short stub-loaded resonators," Progress In Electromagnetics Research Letters, Vol. 32, 101-108, 2012.
doi:10.2528/PIERL12050105

6. Li, J., S. S. Huang, H. Wang, and J. Z. Zhao, "Compact dual-band bandpass filter using embedded center-grounded SIR and open-loop resonators," Progress In Electromagnetics Research Letters, Vol. 49, 9-14, 2014.

7. Chen, F. C., Q. X. Chu, Z. H. Li, and X. H. Wu, "Compact dual-band bandpass filter with controllable bandwidths using stub-loaded multiple-mode resonator," IET Microw. Antennas Propag., Vol. 6, No. 10, 1172-1178, 2012.
doi:10.1049/iet-map.2011.0523

8. Chin, K.-S. and J.-H. Yeh, "Dual-wideband bandpass filter using short-circuited stepped-impedance resonators," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 3, 155-157, 2009.
doi:10.1109/LMWC.2009.2013736

9. Zhou, J.-G., W.-J. Feng, and W.-Q. Che, "Dual-wideband bandpass filter using T-shaped structure based on transversal signal-interaction concepts," Electron. Lett., Vol. 48, No. 24, 1539-1540, 2012.
doi:10.1049/el.2012.3419

10. Xu, J. and W. Wu, "Miniaturised dual-wideband bandpass filter using novel dual-band coupled-line sections," Electron. Lett., Vol. 49, No. 18, 1162-1163, 2013.
doi:10.1049/el.2013.1665

11. Li, J., S.-S. Huang, and J.-Z. Zhao, "Compact dual-wideband bandpass filter using a novel penta-mode resonator (PMR)," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 10, 668-670, 2014.
doi:10.1109/LMWC.2014.2341014