Vol. 54
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-06-23
Off-Grid Direction-of-Arrival Estimation Using a Sparse Array Covariance Matrix
By
Progress In Electromagnetics Research Letters, Vol. 54, 15-20, 2015
Abstract
An off-grid direction-of-arrival (DOA) estimation method that utilizes a sparse array covariance matrix is proposed. In this method, the array covariance matrix is sparsely represented in the form of a vector and then modified to become an off-grid DOA estimation model according to the first-order Taylor series. By solving for the two sparse vectors in the resulting array covariance matrix, the off-grid DOA estimation can thus be achieved. We present an alternating iterative algorithm that exploits the alternating update of a convex optimization problem and a least-squares problem to solve for these two sparse vectors. Our method also extends the aperture. The effectiveness and efficiency of the proposed method are demonstrated in the simulation results.
Citation
Xiaoyu Luo, Xiao Chao Fei, Lu Gan, and Ping Wei, "Off-Grid Direction-of-Arrival Estimation Using a Sparse Array Covariance Matrix," Progress In Electromagnetics Research Letters, Vol. 54, 15-20, 2015.
doi:10.2528/PIERL15030306
References

1. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Trans. Signal Process. Mag., Vol. 13, No. 4, 67-94, 1996.
doi:10.1109/79.526899        Google Scholar

2. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, 1989.
doi:10.1109/TAP.1986.1143830        Google Scholar

3. Stoica, P. and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound," IEEE Trans. Acoust., Lett., Vol. 34, No. 3, 276-280, 1986.        Google Scholar

4. Malioutov, D., M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. Signal Process., Vol. 53, No. 8, 3010-3022, 2005.
doi:10.1109/TSP.2005.850882        Google Scholar

5. Stoica, P., P. Babu, and J. Li, "SPICE: A sparse covariance-based estimation method for array processing," IEEE Trans. Signal Process., Vol. 59, No. 2, 629-638, 2011.
doi:10.1109/TSP.2010.2090525        Google Scholar

6. Yin, J.-H. and T.-Q. Chen, "Direction-of-arrival estimation using a sparse representation of array covariance vectors," IEEE Trans. Signal Process., Vol. 59, No. 9, 4489-4493, 2011.
doi:10.1109/TSP.2011.2158425        Google Scholar

7. He, Z.-Q., Q.-H. Liu, L.-N. Jin, and S. Ouyang, "Low complexity method for DOA estimation using array covariance matrix sparse representation," Electronics Letters, Vol. 49, No. 3, 228-230, 2013.
doi:10.1049/el.2012.4032        Google Scholar

8. Carlin, M., P. Rocca, G. Oliveri, F. Viani, and A. Massa, "Directions-of-arrival estimation through bayesian compressive sensing strategies," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3828-3838, 2013.
doi:10.1109/TAP.2013.2256093        Google Scholar

9. Tang, G., B. N. Bhaskar, P. Shah, and B. Recht, "Compressed sensing off the grid," IEEE Trans. Inf. Theory, Vol. 59, No. 11, 7465-7490, 2013.
doi:10.1109/TIT.2013.2277451        Google Scholar

10. Zhu, H., G. Leus, and G. Giannakis, "Sparsity-cognizant total least-squares for perturbed compressive sampling," IEEE Trans. Signal Process., Vol. 59, No. 5, 2002-2016, 2011.
doi:10.1109/TSP.2011.2109956        Google Scholar

11. Zheng, J.-M. and M. Kaveh, "Directions-of-arrival estimation using a sparse spatial spectrum model with uncertainty," IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), 2848-2851, 2011.        Google Scholar

12. Tan, Z. and A. Nehorai, "Sparse direction of arrival estimation using co-prime arrays with off-grid targets," IEEE Trans. Signal Process. Lett., Vol. 21, No. 1, 26-29, 2014.
doi:10.1109/LSP.2013.2289740        Google Scholar

13. Tan, Z., P. Yang, and A. Nehorai, "Joint sparse recovery method for compressed sensing with structured dictionary mismatches," IEEE Trans. Signal Process., Vol. 62, No. 19, 4997-5008, 2014.
doi:10.1109/TSP.2014.2343940        Google Scholar

14. Yang, Z., L.-H. Xie, and C.-S. Zhang, "Off-grid direction of arrival estimation using sparse Bayesian inference," IEEE Trans. Signal Process., Vol. 61, No. 1, 38-43, 2013.
doi:10.1109/TSP.2012.2222378        Google Scholar

15. Zhang, Y., Z.-F. Ye, X. Xu, and N. Hu, "Off-grid DOA estimation using array covariance matrix and block-sparse Bayesian learning," Signal Process., Vol. 98, 197-201, 2014.
doi:10.1016/j.sigpro.2013.11.022        Google Scholar

16. Jagannath, R. and K. V. S. Hari, "Block sparse estimator for grid matching in single snapshot DoA estimation," IEEE Trans. Signal Process. Lett., Vol. 20, No. 11, 1038-1041, 2013.
doi:10.1109/LSP.2013.2279124        Google Scholar

17. Yang, Z., C.-S. Zhang, and L.-H. Xie, "Robustly stable signal recovery in compressed sensing with structured matrix perturbation," IEEE Trans. Signal Process., Vol. 60, No. 9, 4658-4671, 2012.
doi:10.1109/TSP.2012.2201152        Google Scholar

18. Donoho, D. L., M. Elad, and V. N. Temlyakov, "Stable recovery of sparse overcomplete representations in the Presence of Noise," IEEE Trans. Inf. Theory, Vol. 52, No. 1, 6-18, 2006.
doi:10.1109/TIT.2005.860430        Google Scholar

19. Tropp, J. A., "Just relax: Convex programming methods for identifying sparse signals in noise," IEEE Trans. Inf. Theory, Vol. 52, No. 3, 1030-1048, 2006.
doi:10.1109/TIT.2005.864420        Google Scholar