Vol. 42
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-06-03
Effects of Inflated Cone on Satellite's Radar Cross Sections in S-Band via FDTD Simulations
By
Progress In Electromagnetics Research M, Vol. 42, 109-119, 2015
Abstract
Satellites are the most important link in today's battle field, and with the advancement of anti-satellite technologies like anti-satellite missiles and directed energy weapons, satellites are becoming vulnerable to attack. The vulnerability of satellite depends highly on its probability of being detected and tracked, and optics or radars are the two major means of detection. To avoid detection, several suggestions have been made in the past to deflect ambient light and decrease the RCS (radar cross section) to avoid detection. The most notable RF stealth suggestion among them is the proposal of using an inflatable polymer cone to change its shape and reduce satellite's RCS. In this study we examine the RCS of this so-called stealth satellite in S-band with FDTD simulations, and analyze its frequency and radar incident angle dependence. Results indicate this shape is advantageous in bore sight monostatic backscatter RCS reduction, but in other directions the RCS increases due to sheer size effect, which makes it even more vulnerable to bi-static radar tracking. When it is slant illuminated, the RCS of the stealth satellite shows no RCS reduction effects. Such inflated device is susceptible to space debris damage and cumbersome to operate, and may interfere with the original mission of the satellite. Best strategy for satellite self-defense is orbit change.
Citation
Shen Shou Max Chung, "Effects of Inflated Cone on Satellite's Radar Cross Sections in S-Band via FDTD Simulations," Progress In Electromagnetics Research M, Vol. 42, 109-119, 2015.
doi:10.2528/PIERM15033102
References

1. Satellites, , http://en.wikipedia.org/wiki/Satellite.
doi:10.1007/978-1-4684-9904-9

2. National Reconnaissance Office, , http://en.wikipedia.org/wiki/National_Reconnaissance_Office.

3. Defense Support Program, , http://en.wikipedia.org/wiki/Defense_Support_Program.

4. Knott, E. F., Radar Cross Section Measurement, Van Norstrand Reinhold, New York, 1993.

5. The Howland Company, , http://www.thehowlandcompany.com/index.htm.

6. RATSCAT, , http://virtualglobetrotting.com/map/radar-target-scatter-ratscat-range/.

7. United States Space Surveillance Network, , http://en.wikipedia.org/wiki/United_States_Space_Surveillance_Network.
doi:10.1049/sbra120e

8. Air Force Space Surveillance System, , http://en.wikipedia.org/wiki/Air_Force_Space_Surveillance System.
doi:10.1007/978-1-4613-0473-9

9. Space Fence, , http://www.lockheedmartin.com/us/products/space-fence.html.

10. Lynch, Jr., D., Introduction to RF Stealth, SciTech Publishing Inc., Raleigh, NC, 2004.

11. Vinoy, K. J. and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer Academic Publishers, Boston, MA, 1996.

12. Saville, P., "Review of radar absorbing materials,", Technical Memorandum, DRDC Atlantic, 2005, available on line at http://www.dtic.mil/dtic/tr/fulltext/u2/a436262.pdf.

13. Barker, W. C., Radar Camouflage Arrangement, US Patent 3,233,238, Feb. 1, 1966.

14. Manning, W. P. and L. Maus, Self Erectable Structure, US Patent 4,044,358, Aug. 23, 1977.

15. Lehman, T. H. and W. P. Manning, Vehicle Shield, US Patent 4,947,174, Aug. 7, 1990.

16. Barker, W. C. and D. M. Slager, Cross Skirt Antiradar Screen Structure for Space Vehicle, US Patent 6,107,952, Aug. 22, 2000.

17. Eldridge, M. T., K. H. McKechnie, and R. M. Hefley, Satellite Signature Suppression Shield, US Patent 5,345,238, Sep. 6, 1994.

18. Mittra, R. and W. Yu, "General-purpose EM solver (GEMS): A new simulation tool for modeling large-scale electromagnetic systems on parallel platforms," Joint Seminar of the IEEE Ottawa AP/MTT, CPMT, EMC Chapters and Department of Electronics, Carleton University, May 5, 2009, available online at http://www.ottawa.ieee.ca/ap mtt/docs/Mittra Yu may 51.pdf.

19. GEMS: http://www.2comu.com/.

20. Skolnik, M., Radar Handbook, 3rd Ed., McGraw-Hill Professional, 2008.
doi:10.1109/MAP.2008.4494511

21. Ufimtsev, P. Ya., Fundamentals of the Physical Theory of Diffraction, 1st Ed., Wiley-IEEE Press, Feb. 16, 2007.
doi:10.1109/MAP.2008.4562259

22. FEKO, https://www.feko.info/, CST, https://www.cst.com/, EMPIRE, http://www.empire.de/, HFSS, http://www.ansys.com, XFDTD, http://www.remcom.com/xf7, Efields: http://www.efieldsolutions.com/, EMPRO, http://www.home.agilent.com, cadRCS: http://www.cadrcs.com/en/start.html, CAST, http://virtual.vtt.fi/virtual/proj2/cast/, NEC2, http://www.nec2.org/.

23. Uluisik, Ç., M. Çakir, and L. Sevgi, "Radar cross section (RCS) modeling and simulation, Part 1: A tutorial review of definitions, strategies, and canonical examples," IEEE Ant. and Prop. Mag., Vol. 50, No. 1, 115-126, Feb. 2008.
doi:10.1109/PROC.1965.4062

24. Çakir, G., M. Çakir, and L. Sevgi, "Radar cross section (RCS) modeling and simulation, Part 2: A novel FDTD-based RCS prediction virtual tool for the resonance regime," IEEE Ant. and Prop. Mag., Vol. 50, No. 2, 81-94, Apr. 2008.

25. Mie Scattering Theory, http://www.mathworks.com/matlabcentral/fileexchange/36062-calculation-of-radar-cross-section-rcs-using-mie-theory.

26. Crispin, Jr., J. W. and A. L. Maffett, "Radar cross-section estimation for simple shapes," Proceedings of the IEEE, Vol. 53, No. 8, 833-848, Aug. 1965.

27. RCS Benchmark for Simple Shapes: http://www.emcos.com/wp-content/uploads/2014/03/Application Note RCS Benchmark Simple Shapes.pdf.

28. Knott, E. F., J. F. Schaeffer, and M. T. Tuley, Radar Cross Section, 274, SciTech Publishing Inc., 2004.
doi:10.1016/j.vacuum.2011.08.016

29. Lacrosse (satellite), http://en.wikipedia.org/wiki/Lacrosse_(satellite).

30. Understanding the FDTD Method, Chapter 14, Near-To-Far-Field Transformation, http://www.eecs.wsu.edu/ schneidj/ufdtd/chap14.pdf.

31. Chung, S. S. M., "FDTD simulations on radar cross sections of metal cone and plasma covered metal cone," Vacuum, Vol. 86, No. 7, 970-984, Feb. 8, 2012.