Vol. 57
Latest Volume
All Volumes
PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-10-30
A Compact Stable Frequency Selective Surface Using Novel Y-Type Element
By
Progress In Electromagnetics Research Letters, Vol. 57, 85-90, 2015
Abstract
In this letter, a compact stable bandpass frequency selective surface (FSS) operating at 3.14 GHz is proposed by using a novel Y-type element. The measured and numerical results are in good agreement, except a little deviation of resonant frequency and a little change of bandwidth, which show that the proposed FSS has good angle and polarization stability. Numerical results show that the dimension of the element is only 0.042λ0×0.042λ0, where λ0 represents the wavelength at the resonant frequency 3.14 GHz. Thus, the FSS is suitable for practical application in limited space.
Citation
Rui Wu, Hou Zhang, Zi-Mu Yang, Tao Zhong, and Yongfan Lin, "A Compact Stable Frequency Selective Surface Using Novel Y-Type Element," Progress In Electromagnetics Research Letters, Vol. 57, 85-90, 2015.
doi:10.2528/PIERL15050705
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

2. Vardaxoglou, J. C., Frequency Selective Surfaces, Wiley, New York, 1997.

3. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetic Research, Vol. 96, 287-289, 2009.
doi:10.2528/PIER09081702

4. Yang, H.-Y., S.-X. Gong, P.-F. Zhang, F.-T. Zha, and J. Ling, "A novel miniaturized frequency selective surface with excellent center frequency stability," Microw. Opt. Technol. Lett., Vol. 51, No. 10, 2513-2516, 2009.
doi:10.1002/mop.24604

5. Bayatpur, F. and K. Sarabandi, "Single-layer high-order miniaturized-element frequency selective surfaces," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 4, 774-781, 2008.
doi:10.1109/TMTT.2008.919654

6. Dorsey, W. M., C. S. McDermitt, F. Bucholtz, and M. G. Parent, "Design and performance of frequency selective surface with integrated photodiodes for photonic calibration of phased array antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 58, 157-162, 2012.

7. Yang, G., T. Zhang, W. Li, and Q. Wu, "A novel stable miniaturized frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1018-1021, 2010.
doi:10.1109/LAWP.2010.2089776

8. Liu, H. L., K. L. Ford, and R. J. Langley, "Design methodology for a miniaturized frequency selective surface using lumped reactive components," IEEE Transactions on Antennas Propagation, Vol. 57, No. 9, 2732-2738, 2009.
doi:10.1109/TAP.2009.2027174

9. Mohamadi, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2012.

10. Yuan, Z.-D., J. Gao, X.-Y. Cao, and H.-H. Yang, "A novel frequency selective surface with stable performance and its application in microstrip antenna," Acta Phys. Sin., Vol. 63, No. 1, 014102, 2014.

11. Zheng, S., Y. Yin, J. Fan, and X. Yang, "Analysis of miniature frequency selective surfaces based on fractal antenna-filter-antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 240-243, 2012.
doi:10.1109/LAWP.2012.2189749

12. Hu, X.-D., X.-L. Zhou, L.-S. Wu, L. Zhou, and W.-Y. Yin, "A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern," IEEE Antennas Wireless Propagation Letters, Vol. 18, 1374-1377, 2009.