Vol. 54
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-06-24
One-Step Leapfrog HIE-FDTD Method for Lossy Media
By
Progress In Electromagnetics Research Letters, Vol. 54, 21-26, 2015
Abstract
The one-step leapfrog hybrid implicit-explicit finite-difference time-domain (HIE-FDTD) method for lossy media is presented. By adopting the Crank-Nicolson and Peaceman-Rachford schemes, the derived method involves calculations of the lossy terms at two different time steps. Different from the original HIEFDTD method, the proposed method can also be considered as a second order perturbation of the conventional FDTD method. To verify the effectiveness of the proposed method, numerical experiments are performed by using different FDTD methods. It is shown that the proposed method can be more efficient than the conventional HIE-FDTD method with almost the same accuracy.
Citation
Jian-Yun Gao, Xiang-Hua Wang, and Hong-Xing Zheng, "One-Step Leapfrog HIE-FDTD Method for Lossy Media," Progress In Electromagnetics Research Letters, Vol. 54, 21-26, 2015.
doi:10.2528/PIERL15051102
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Edition, Artech House, Norwood, MA, 2005.

2. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three dimensional unconditionally stable finite-different time-domain method," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 9, 1550-1558, 2000.
doi:10.1109/22.868993

3. Cooke, S. J., M. Botton, T. M. Antonsen, and B. Levush, "A leapfrog formulation of the 3D ADI-FDTD algorithm," Int. J. Numer. Model, Vol. 22, No. 2, 187-200, 2009.
doi:10.1002/jnm.707

4. Gan, T. H. and E. L. Tan, "Unconditionally stable leapfrog ADI-FDTD method for lossy media," Progress In Electromagnetics Research M, Vol. 26, 173-186, 2012.
doi:10.2528/PIERM12090307

5. Gao, J. Y. and H. X. Zheng, "One-step leapfrog ADI-FDTD method for lossy media and its stability analysis," Progress In Electromagnetics Research Letters, Vol. 40, 49-60, 2013.
doi:10.2528/PIERL12110213

6. Wang, X. H., W. Y. Yin, and Z. Chen, "One-step Leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media," Optics Express, Vol. 21, No. 18, 20565–-20576, 2013.
doi:10.1364/OE.21.020565

7. Chen, J. and J. Wang, "A 3-D hybrid implicit-explicit FDTD schemewith weakly conditional stability," Microw. Opt. Technol. Lett., Vol. 48, 2291-2294, 2006.
doi:10.1002/mop.21898

8. Chen, J. and J. Wang, "A novel WCS-FDTD method with weakly conditionalstability," IEEE Trans. Electromagn. Compat., Vol. 49, No. 2, 419-426, 2007.
doi:10.1109/TEMC.2007.897130

9. Wang, J., B. Zhou, L. Shi, C. Gao, and B. Chen, "A novel 3-D HIE-FDTD method with one-step leapfrog scheme," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 6, 1275-1283, 2014.
doi:10.1109/TMTT.2014.2320692

10. Unno, M. and H. Asai, "HIE-FDTD method for hybrid system with lumped elements and conductive media," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 9, 453-455, 2011.
doi:10.1109/LMWC.2011.2162616