Vol. 54
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-07-15
Broadband Circularly Polarized Antenna Based on Quarter-Mode Substrate Integrated Cylindrical Cavity Subarray
By
Progress In Electromagnetics Research Letters, Vol. 54, 61-66, 2015
Abstract
A broadband circularly polarized planar antenna based on a quarter-mode substrate integrated cylindrical cavity subarray is presented in this communication. It is composed of two layers: a quarter-mode substrate integrated cylindrical Cavity (QMSICC) subarray and the feeding network comprised of three Wilkinson power dividers. The measured 10-dB return loss and 3-dB axial ratio bandwidths at the center frequency 5.2 GHz are 40% and 25.5%, respectively. The gain measured for right-hand circular polarization (RHCP) is 4.6 dBi at 5.2 GHz. And it will be used in WLAN operating at 5.2 GHz.
Citation
Zhangjing Wang, Yahua Ran, Yang Peng, Yang Li, and Yun-Qing Sun, "Broadband Circularly Polarized Antenna Based on Quarter-Mode Substrate Integrated Cylindrical Cavity Subarray," Progress In Electromagnetics Research Letters, Vol. 54, 61-66, 2015.
doi:10.2528/PIERL15052403
References

1. Uchimura, H., T. Takenoshita, and M. Fujii, "Development of a ‘laminated waveguide’," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 12, 2438-2443, Dec. 1998.
doi:10.1109/22.739232

2. Hirokawa, J. and M. Ando, "Efficiency of 76-GHz post-wall waveguide-fed parallel-plate slot arrays," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 11, 1742-1745, Nov. 2000.
doi:10.1109/8.900232

3. Deslandes, D. and K. Wu, "Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2516-2526, Jun. 2006.
doi:10.1109/TMTT.2006.875807

4. Cassivi, Y., L. Perreprini, P. Arcioni, et al. "Dispersion characteristics of subsrtate integrated rectangular waveguide," IEEE Microw. Wireless Compon. Lett., Vol. 12, No. 9, 333-335, 2002.
doi:10.1109/LMWC.2002.803188

5. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 66-73, 2005.
doi:10.1109/TMTT.2004.839303

6. Luo, G. Q., Z. F. Hu, Y. Liang, L. Y. Yu, and L. L. Sun, "Development of low profile cavity backed crossed slot antennas for planar integration," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 2972-2979, Oct. 2009.

7. Razavi, S. and M. Neshati, "Development of a low profile circularly polarized cavity backed antenna using HMSIW technique," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1041-1047, 2013.
doi:10.1109/TAP.2012.2227104

8. Jin, C., R. Li, A. Alphones, and X. Bao, "Quarter-mode substrate integrated waveguide and its application to antennas design," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 2921-2928, Jun. 2013.
doi:10.1109/TAP.2013.2250238

9. Li, Y., et al. "Axial ratio bandwidth enhancement of 60-GHz substrate integrated waveguide-fed circular polarized LTCC antenna array," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4619-4626, Oct. 2012.
doi:10.1109/TAP.2012.2207343

10. Luan, X.-Z. and K.-J. Tan, "Equivalent radius analytic formulas of substrate integrated cylindrical cavity," Proc. Antenna & Propagation (ISAP), 746-749, 2013.

11. Harrington, R. F., Time-harmonic Electromagnetic Fields, 2nd Ed., Chapter 5.4, Wiley-IEEE, 2001.
doi:10.1109/9780470546710

12. Sam, S. and S. Lim, "Electrically small eighth-mode substrate-integrated waveguide antenna with different resonant frequencies depending on rotation of complementary split ring resonator," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 10, 4933-4939, 2013.
doi:10.1109/TAP.2013.2272676

13. Kang, H. and S. Lim, "Electrically small dual-band reconfigurable complementary split-ring resonator (CSRR)-loaded eighth-mode substrate integrated waveguide (EMSIW) antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2368-2373, 2014.
doi:10.1109/TAP.2014.2308532

14. CST Microwave Studio (MWS) CST Corporation, Online Available: http://www.cst.com, 2008.