Vol. 43
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-09-18
Experimental and Numerical Investigations of Line-Shaped Microwave Argon Plasma Source
By
Progress In Electromagnetics Research M, Vol. 43, 183-192, 2015
Abstract
In the following, numerical and experimental results for a line-shaped argon plasma source over a wide range of gas pressure (2 Torr-50 Torr) and microwave power (200-800 W) are presented. The line-shaped plasmas have been generated in a rectangular Pyrex tube, 15 mm in height and 5 mm inner width, placed-in a linear slot made in the upper wide wall of a custom-made narrow rectangular waveguide. The microwave power is coupled to the discharge gas via the slot. The effects of the waveguide width, power level (electron density, and discharge tube insertion depth on the excited axial (along x) electric field profile and hence the uniformity of the produced plasmas are investigated numerically using commercial software CST Microwave Studio®, and charge coupled device (CCD) camera. Results showed that, a uniform line-shaped plasma is generated as waveguide width decreased to 58 mm, plasma density value <<nres = 3.7 × 1011 cm-3, and discharge tube insertion depth = 0 mm. An optical emission spectroscopy study was also realized to deduce the relative density of argon species and electron excitation temperature Texc. In general, argon spectral lines intensity was increased enhanced markedly when microwave power increased, while the different lines showed different behavior as argon pressure increased. The electron excitation temperature Texc decreases with increasing argon pressure, but almost constant overall the whole plasma length.
Citation
Essam Abdel-Fattah Haru Shindo Refat Sabry Alla El Kotp , "Experimental and Numerical Investigations of Line-Shaped Microwave Argon Plasma Source," Progress In Electromagnetics Research M, Vol. 43, 183-192, 2015.
doi:10.2528/PIERM15071004
http://www.jpier.org/PIERM/pier.php?paper=15071004
References

1. Sugai, H., Y. Nojiri, K. Takasu, T. Ishijima, and E. Stamate, "Novel giant-size plasmas produced by microwave discharge with slot antenna array," The 57th GEC, Bull. American Phys. Soc., Vol. 49, No. 5, 10, 2004.

2. Chabert, P. J., "Electromagnetic effects in high-frequency capacitive discharges used for plasma processing," J. Phys. D: Appl. Phys., Vol. 40, R63-R73, 2007.
doi:10.1088/0022-3727/40/3/R01

3. Abdel-Fattah, E., "Investigation of capacitively coupled argon plasma driven at various frequencies and validation of surface waves excitation," Physics Letters A, Vol. 377, 297-302, 2013.
doi:10.1016/j.physleta.2012.11.014

4. Sugai, H., I. Ganachev, and M. Nagatsu, "High-density flat plasma production based on surface waves," Plasma Sources Sci. Technol., Vol. 7, 192-205, 1998.
doi:10.1088/0963-0252/7/2/014

5. Moisan, M. and J. Pelletiers, Microwave Excited Plasmas (Plasma Technology), Vol. 4, Elsevier, Amsterdam, 1992.

6. Ghanachev, I. and H. Sugai, "Multiple eigenmode analysis and density jumps in planar surface-wave plasmas with slot-antenna excitation," Phys. of Plasmas, Vol. 7, 3051-3061, 2000.
doi:10.1063/1.874158

7. Abdel-Fattah, E., I. Ghanachev, and H. Sugai, "Two-diemensional modeling of slot excited surface waves in bounded planar plasmas," Jpn. J. Appl. Phys., Part 1, Vol. 39, 4181-4187, 2000.

8. Tatarova, E., F. M. Dias, C. M. Ferreira, V. Guerra, J. Loureiro, E. Stoykova, I. Ghanashev, and I. Zhelyazkov, "Self-consistent kinetic model of a surface-wave-sustained discharge in nitrogen," J. Phys. D: Appl. Phys., Vol. 30, 2663-2676, 1997.
doi:10.1088/0022-3727/30/19/003

9. Jimenez-Diaz, M., E. A. D. Carbone, J. van Dijk, and J. J. A. M. van der Mullen, "A two-dimensional Plasimo multiphysics model for the plasma electromagnetic interaction in surface wave discharges: The surfatron source," J. Phys. D: Appl. Phys., Vol. 45, 335204-335221, 2012.
doi:10.1088/0022-3727/45/33/335204

10. Abdel-Fattah, E., I. Ghanachev, and H. Sugai, "Numerical 3D simulation of surface wave excitation in planar-type plasma processing device with a corrugated dielectric plate," Vacuum, Vol. 86, 330-334, 2011.
doi:10.1016/j.vacuum.2011.07.058

11. Chen, Z., S. Rauf, K. Ramaswamy, and K. Collins, "Electromagnetic modeling of plasma etch chamber for semiconductor microchip fabrication," PIERS Online, Vol. 5, No. 3, 221-225, 2009.
doi:10.2529/PIERS080829175650

12. Walter, M., D. Korzec, M. Hutten, and G. Engmann, "Computer aided design of microwave plasma sources: Potential and applications," Jpn. J. Appl. Phys., Vol. 36, 4777-4783, 1997.
doi:10.1143/JJAP.36.4777

13. Liang, L., K. Nakamura, and H. Sugai, "Modeling microwave resonance of curling probe for density measurements in reactive plasmas," Appl. Phys. Express, Vol. 4, 066101-066103, 2011.
doi:10.1143/APEX.4.066101

14. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

15. Zethoff, M. and U. Kortshagen, "Dispersion characteristics and radial field distribution of surface waves in the collisional regime," J. Phys. D: Appl. Phys., Vol. 25, 1574-1582, 1992.
doi:10.1088/0022-3727/25/11/003

16. Siry, M., S. Sakata, T. Terebessy, and M. Kando, "Investigation of quartz side wall influence on radial plasma density profiles in low-pressure surface wave plasma source," Jpn. J. Appl. Phys., Vol. 45, 2749-2756, 2006.
doi:10.1143/JJAP.45.2749

17. Boffard, J., C. Lin, and C. DeJoseph, "Application of excitation cross sections to optical plasma diagnostics," J. Phys. D: Appl. Phys., Vol. 37, R143-R153, 2004.
doi:10.1088/0022-3727/37/12/R01

18. Griem, H. R., Principle of Plasma Spectroscopy, Cambridge University Press, Cambridge, 1997.
doi:10.1017/CBO9780511524578

19., , http://physics.nist.gov/cgi-bin/ATDdata/display.ksh.

20. Abdel-Fattah, E., S. Fuji, and H. Shindo, "Large-scaled line plasma production by evanescent microwave," Plasma Devices and Operations, Vol. 17, No. 3, 221-228, 2009.
doi:10.1080/10519990902958029

21. Miotk, R., B. Hrycak, M. Jasinski, and J. Mizeraczyk, "Spectroscopic study of atmospheric pressure 915MHz microwave plasma at high argon flow rate," Journal of Physics: Conference Series, Vol. 406, 012033-012043, 2012.
doi:10.1088/1742-6596/406/1/012033