1. Born, M. and E. Wolf, Principles of Optics, Pergamon Press, 1999.
doi:10.1017/CBO9781139644181
2. Landa, L. D. and E. M. Lifshitz, The Classical theory of Fields, 3rd Ed., Vol. 2, Pergamon Press, 1971.
3. Luneburg, R. K., Mathematical Theory of Optics, University of California Press, 1964.
4. Elsgolz, L., Differential Equations and the Calculus of Variations, 1977.
5. Oden, T. J. and J. N. Reddy, "On dual-complementary variational principles in mathematical physics," Int. J. Engng. Sci., Vol. 12, 1-29, 1974.
doi:10.1016/0020-7225(74)90073-1 Google Scholar
6. Leonhardt, U. and T. G. Philbin, Geometry and Light: The Science of Invisibility, Dover, 2010.
7. Urzhumov, Y. A., N. B. Kundtz, D. R. Smith, and J. B. Pendry, "Cross-section comparison of cloaks designed by transformation optical and optical conformal mapping approaches," Journal of Optics, Vol. 13, 024002, 2011.
doi:10.1088/2040-8978/13/2/024002 Google Scholar
8. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
9. Halimeh, J. C. and M. Wegener, "Time-of-flight imaging of invisibility cloaks," Opt. Express, Vol. 20, No. 1, 63-74, 2012.
doi:10.1364/OE.20.000063 Google Scholar
10. Halimeh, J. C. and M. Wegener, "Photorealistic rendering of unidirectional free-space invisibility cloaks," Opt. Express, Vol. 21, 9457-9472, 2013.
doi:10.1364/OE.21.009457 Google Scholar
11. Arthurs, A. M., Complementary Varational Principles, Oxford University Press, 1980.
12. Tonti, E., "On the mathematical structure of a large class of physical theories," Accademia Nazionale dei Lincei, Estratto dai Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali, Serie VIII, Vol. LII, fasc 1, 1972. Google Scholar
13. Tonti, E., "A mathematical model for physical theories," Accademia Nazionale dei Lincei, Estratto dai Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali, Serie VIII, Vol. LII, fasc 2-3, 1972. Google Scholar
14. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd Ed., Vol. 8, Butterworth-Heinemann, 1984.
15. Duan, X., Y. Ma, and R. Zhang, "Shape-topology optimization of stokes flow via variational level set method," Journal of Computational and Applied Mechanics, Vol. 222, 487-499, 2008.
doi:10.1016/j.cam.2007.11.016 Google Scholar
16. Duan, X., Y. Ma, and R. Zhang, "Shape-topology optimization for Navier-Stokes problem using variational level set method," Journal of Computational and Applied Mechanics, Vol. 202, 200-209, 2008. Google Scholar
17. Osher, S. and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, 2003.
doi:10.1007/b98879
18. Tsai, R. and S. Osher, "Set methods and their applications in image science," Comm. Math. Sci., Vol. 1, No. 4, 623-656, 2003. Google Scholar
19. Fung, Y. C., Foundations of Solid Mechanics, Prentice Hall, 1965.
20. Chandrasekharaiah, D. L. and L. Debnath, Continuum Mechanics, 80, Academic Press, 1994.
21. Bellver-Cebreros, C. and M. Rodriguez-Danta, "On Inhomogeneous metamaterials media: A new alternative method for analysis of electromagnetic fields propagation," Progress In Electromagnetics Research, Vol. 149, 101-108, 2014.
doi:10.2528/PIER14070306 Google Scholar