Vol. 44
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-11-13
Study of the Effects of Eccentric Plasma Coating Over Metamaterial Cylinder
By
Progress In Electromagnetics Research M, Vol. 44, 139-148, 2015
Abstract
A plasma sheath can significantly alter the electromagnetic properties of an object, which leads to many practical applications. In this article, the electromagnetic scattering properties of a DB metamaterial cylinder coated with unmagnetized plasma are studied. The effects of layer thickness, non-uniform cladding (eccentric coating), electron number density, electron-neutral collision frequency and the frequency of incident wave on radar cross-section (RCS) of the object are discussed. It is found that the RCS of the DB metamaterial objects can be reduced or enhanced by appropriate values of plasma parameters, thickness or eccentricity. The anomalous behavior of backscattering crosssection of plasma coated DB cylinder has been observed at frequencies near plasma frequency. The results may serve as a noteworthy reference for experimentalists working in plasma stealth technology for metamaterials.
Citation
Tayyab Hussain Malik, Shakeel Ahmed, Aqeel Abbas Syed, and Qaisar Naqvi, "Study of the Effects of Eccentric Plasma Coating Over Metamaterial Cylinder," Progress In Electromagnetics Research M, Vol. 44, 139-148, 2015.
doi:10.2528/PIERM15091503
References

1. Kraus, J. D., Detection of Sputnik-i and Sputnik-ii by CW Reflection, 1958.

2. Jastrow, R. and C. A. Pearse, Atmospheric Drag on a Satellite, 1957.

3. Dolph, C. L. and H. Weil, "On the change in radar cross-section of a spherical satellite caused by a plasma sheath," Planetary and Space Science, Vol. 6, 123-132, 1961.
doi:10.1016/0032-0633(61)90012-5

4. Rusch, W. V. T., "Radiation from a plasma-clad axially-slotted cylinder,", Electrical Engineering Department, University of Southern California, 1962.

5. Swarner, W. G., L. Peters, and Jr., "Radar cross sections of dielectric or plasma coated conducting spheres and circular cylinders," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 5, 558-569, 1963.
doi:10.1109/TAP.1963.1138087

6. Chen, H. C. and D. K. Cheng, "Scattering of electromagnetic waves by an anisotropic plasma-coated conducting cylinder," IEEE Transactions on Antennas and Propagation, Vol. 12, No. 3, 348-353, 1964.
doi:10.1109/TAP.1964.1138206

7. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace and Electronic Systems, Vol. 5, 879-894, 1971.
doi:10.1109/TAES.1971.310328

8. Zheng, L., Q. Zhao, and X. J. Xing, "Effect of plasma on electromagnetic wave propagation and THZ communications for reentry flight," Applied Computational Electromagnetics Society Journal, Vol. 30, No. 11, 2015.

9. Shi, L., B. Guo, Y. Liu, and Ji. Li, "Characteristic of plasma sheath channel and its effect on communication," Progress In Electromagnetics Research, Vol. 123, 321-336, 2012.
doi:10.2528/PIER11110201

10. He, G., Y. Zhan, N. Ge, Y. Pei, B. Wu, and Y. Zhao, "Channel characterization and finite-state Markov channel modeling for time-varying plasma sheath surrounding hypersonic vehicles," Progress In Electromagnetics Research, Vol. 145, 299-308, 2014.
doi:10.2528/PIER14031104

11. Shan, Z.-X., "Electromagnetic scattering by an impedance cylinder coated eccentrically with a chiroplasma cylinder," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 141, No. 4, 279-284, 1994.
doi:10.1049/ip-map:19941173

12. Yin, B., F. Yang, H. Hao, and C. Li, "Analysis of scattering wave for a conducting cylinder coated with eccentric plasma," Radiation Effects and Defects in Solids, Vol. 168, No. 5, 344-351, 2013.
doi:10.1080/10420150.2012.723003

13. Li, J., X. Guo, Y.-C. Jiao, and R. Wang, "Composite scattering of a plasma-coated target above dispersive sea surface by the ADE-FDTD method," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 1, 4-8, 2013.
doi:10.1109/LGRS.2012.2189751

14. Li, J., L.-X. Guo, Q. He, and B. Wei, "Investigation on scattering from a plasma-coated target over a rough sea surface using a multi-hybrid method," Waves in Random and Complex Media, Vol. 22, No. 3, 344-355, 2012.
doi:10.1080/17455030.2012.680521

15. Liu, S. and S. Zhong, "FDTD study on scattering for conducting target coated with magnetized plasma of time-varying parabolic density distribution," Progress In Electromagnetics Research M, Vol. 22, 13-25, 2012.
doi:10.2528/PIERM11083109

16. Sakai, O. and K. Tachibana, "Plasmas as metamaterials: A review," Plasma Sources Science and Technology, Vol. 21, No. 1, 013001, 2012.
doi:10.1088/0963-0252/21/1/013001

17. Sakai, O., "Emerging aspects in a plasma-metamaterial composite," 2011 XXXth URSI IEEE General Assembly and Scientific Symposium, 1-4, 2011.
doi:10.1109/URSIGASS.2011.6051083

18. De Ridder, C.-M. and L. G. Peterson, "Scattering from a homogeneous plasma cylinder of infinite length,", Technical report, DTIC Document, 1962.

19. Geng, Y., X. Wu, and L.-W. Li, "Analysis of electromagnetic scattering by a plasma anisotropic sphere," Radio Science, Vol. 38, No. 6, 2003.
doi:10.1029/2003RS002913

20. Wu, X. P., J.-M. Shi, Z. S. Chen, and B. Xu, "new plasma antenna of beam-forming," Progress In Electromagnetics Research, Vol. 126, 539-553, 2012.
doi:10.2528/PIER12021906

21. Bulanov, S. V., T. Z. Esirkepov, J. Koga, and T. Tajima, "Interaction of electromagnetic waves with plasma in the radiation-dominated regime," Plasma Physics Reports, Vol. 30, No. 3, 196-213, 2004.
doi:10.1134/1.1687021

22. Umeda, T., Electromagnetic Waves in Plasma, INTECH Open Access Publisher, 2011.

23. Batchelor, D. B., R. C. Goldfinger, and H. Weitzner, "Propagation and absorption of electromagnetic waves in fully relativistic plasmas," Physics of Fluids (1958–1988), Vol. 27, No. 12, 2835-2846, 1984.
doi:10.1063/1.864587

24. Ivanov, S. T. and E. G. Alexov, "Electromagnetic waves in a plasma waveguide," Journal of plasma Physics, Vol. 43, No. 1, 51-67, 1990.
doi:10.1017/S0022377800014616

25. Khalid, M., S. Ahmed, A. A. Syed, and Q. A. Naqvi, "Electromagnetic response of a circular db cylinder in the presence of chiral and chiral nihility metamaterials," Progress In Electroma Research M, Vol. 21, 253-266, 2011.
doi:10.2528/PIERM11051906

26. Li, C. and Z Shen, "Electromagnetic scattering by a conducting cylinder coated with metamaterials," Progress In Electromagnetics Research, Vol. 42, 91-105, 2003.
doi:10.2528/PIER03012901

27. Kishk, A., R. P. Parrikar, A. Z. Elsherbeni, et al. "Electromagnetic scattering from an eccentric multilayered circular cylinder," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 3, 295-303, 1992.
doi:10.1109/8.135472

28. Roumeliotis, J. A., J. G. Fikioris, and G. P. Gounaris, "Electromagnetic scattering from an eccentrically coated infinite metallic cylinder," Journal of Applied Physics, Vol. 51, No. 8, 4488-4493, 1980.
doi:10.1063/1.328271

29. Lakhtakia, A., J. B. Geddes, and III, "Scattering by a nihility cylinder," AEU-International Journal of Electronics and Communications, Vol. 61, No. 1, 62-65, 2007.
doi:10.1016/j.aeue.2006.02.008

30. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a chiral-coated nihility cylinder," Progress In Electromagnetics Research Letters, Vol. 18, 41-50, 2010.
doi:10.2528/PIERL10072807

31. Lindell, I. V. and A. H. Sihvola, "Electromagnetic boundary conditions defined in terms of normal field components," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1128-1135, 2010.
doi:10.1109/TAP.2010.2041149

32. Lindell, I. V. and A. H. Sihvola, "Electromagnetic boundary and its realization with anisotropic metamaterial," Physical Review E, Vol. 79, No. 2, 026604, 2009.
doi:10.1103/PhysRevE.79.026604

33. Sihvola, A., H. Walien, P. Ylä-Oijala, J. Markkanen, and I. V. Lindell, "Material realizations of extreme electromagnetic boundary conditions and metasurfaces," 2011 XXXth URSI IEEE General Assembly and Scientific Symposium, 1-4, 2011.
doi:10.1109/URSIGASS.2011.6050257

34. Balanis, C. A., Advanced Engineering Electromagnetics, 1989.