Vol. 46
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-01-14
Radar Cross Section Reduction Property of High Impedance Surface on a Lossy Dielectric
By
Progress In Electromagnetics Research M, Vol. 46, 19-28, 2016
Abstract
A detailed study on the performance of square loop High impedance Surface (HIS) on lossy dielectric with its Artificial Magnetic Conductor (AMC) Property changing to narrow band absorber and then to Perfect Electric Conductor (PEC) depending on the loss in the dielectric is presented in this paper. An equivalent circuit modelling is used to theoretically explain how this transition is happening. This observed narrow band absorption (0.08 GHz) on the thin (0.016λ) lossy dielectric is scalable to different operating frequencies by varying the dimension of the geometry. The simulation studies on the effect of different geometrical, dielectric and incident wave parameters on the absorption property of this lossy HIS are also dealt with in this paper. Experimental investigation is in good agreement with simulated result and equivalent circuit modelling.
Citation
Vadakkekalathil Libi Mol, Sreekala P. Sasikumar, Dibin Mary George, Arimpoorpallan Lindo, Neeraj Kavalparambil Pushkaran, and Aanandan Chandroth, "Radar Cross Section Reduction Property of High Impedance Surface on a Lossy Dielectric," Progress In Electromagnetics Research M, Vol. 46, 19-28, 2016.
doi:10.2528/PIERM15101606
References

1. Sievenpiper, D., L. Zhang, R. F. J Broas, N. G. Alexopolous, and E. Yaablonovicth, "High impedance electromagnetic surfaces in a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

2. Costa, F. and A. Monorchio, "Closed-form analysis of reflection losses in microstrip reflectarray antennas," IEE Tran. Antennas and Prop., Vol. 60, No. 10, 650-4660, Oct. 2012.

3. Lee, K.-C., C.-W. Huang, and M.-C. Fang, "Radar target recognition by projected features of frequency-diversity RCS," Progress In Electromagnetics Research, Vol. 81, 121-133, 2008.
doi:10.2528/PIER08010206

4. Li, N.-J., C.-F. Hu, L.-X. Zhang, and J.-D. Xu, "Overview of RCS extrapolation techniques to aircraft targets," Progress In Electromagnetics Research B, Vol. 9, 249-262, 2008.
doi:10.2528/PIERB08080706

5. Knott, E. F., M. T. Tuley, and J. F. Shaeffer, Radar Cross Section, 2nd Ed., SciTech Publishing, Inc., Raleigh, NC, USA, 2004.

6. Paquay, M., J.-C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEE Tran. Antennas and Prop., Vol. 55, No. 12, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306

7. De Cos, M. E., Y. Alvarez-Lopez, and F. Las-Heras Andres, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402

8. Salisbury, W. W., "Absorbent body for electromagnetic waves,", U.S. Patent 2 599 944, Jun. 10, 1952.

9. Fante, R. L. and M. T. McCormack, "Reflection properties of the salisbury screen," IEEE Trans. Antennas Propag., Vol. 36, No. 10, 1443-1454, Oct. 1988.
doi:10.1109/8.8632

10. Li, M., S. Q. Xiao, Y.-Y. Bai, and B.-Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas and Propagation Letters, Vol. 11, 748-751, 2012.

11. Shang, Y., Z. Shen, and S. Xiao, "On the design of single-layer circuit analog absorber using double-square-loop array," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6022-6029, Dec. 2013.
doi:10.1109/TAP.2013.2280836

12. Zhang, G. R., P. H. Zhou, H. B. Zhang, L. B. Zhang, J. L. Xie, and L. J. Deng, "Analysis and design of triple-band high-impedance surface absorber with periodic diversified impedance," J. Appl. Phys., Vol. 114, 164103, 2013.
doi:10.1063/1.4826265

13. Tang, W. and Z. Shen, "Simple design of thin and wideband circuit analogue absorber," Electron. Lett., Vol. 43, No. 12, 689-691, Jun. 2007.
doi:10.1049/el:20070956

14. Costa, F. and A. Monorchio, "Electromagnetic absorbers on high impedance surfaces: From ultra narrowband to ultra wideband absorption," Advanced Electromagnetics, Vol. 1, No. 3, 7, Oct. 2012.
doi:10.7716/aem.v1i3.22

15. Sujatha, M. N. and K. J. Vinoy, "Analysis of absorption characteristics of stacked patch arrays on moderately lossy dielectric layers," Appl. Phys. A, Vol. 119, 1143-1148, 2015.
doi:10.1007/s00339-015-9082-7

16. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

17. Simovski, C. R., P. Maagt, and I. V. Melchakova, "High impedance surfaces having resonance with respect to polarization and incident angle," IEEE Trans. Antennas Propaga., Vol. 53, No. 3, 908-914, 2005.
doi:10.1109/TAP.2004.842598

18. Hashemi, S. M., S. A. Tretyakov, M. Soleimani, and C. R. Simovski, "Dual-polarized angularly stable high-impedance surface," IEEE Trans. Antennas Propaga., Vol. 61, No. 8, 4101-4108, 2013.
doi:10.1109/TAP.2013.2263216

19. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, Norwood, MA, USA, 2003.

20. Marcuvitz, N., Waveguide Hand Book, McGraw Hill, New York, 1951.

21. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," IET Electron. Lett., Vol. 18, No. 7, 294-296, 1982.
doi:10.1049/el:19820201

22. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency selective surfaces by a simple equivalent circuit approach," IEEE Antennas and Propag. Mag., Vol. 54, No. 4, 35-48, 2012.
doi:10.1109/MAP.2012.6309153

23. Costa, F., A. Monorchio, and G. Manara, "An equivalent-circuit modelling of high impedance surfaces employing arbitrarily shaped FSS," Proc. Int. Conf. on Electromagnetics in Advanced Applications, ICEEA, 852-855, Turin, Sep. 14-18, 2009.

24. Luukkonen, O., C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Risnen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1624-1632, 2008.
doi:10.1109/TAP.2008.923327