Vol. 66
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-02-16
Electromagnetic Field Theory for Invariant Beams Using Scalar Potentials
By
Progress In Electromagnetics Research B, Vol. 66, 49-61, 2016
Abstract
We present a description of the electromagnetic field for the propagation invariant beams using scalar potentials. Fundamental dynamical quantities are obtained: energy density, Poynting vector and Maxwell stress tensor. As an example, all these quantities are explicitly calculated for the Bessel beams, which are invariant beams with circular cylindrical symmetry.
Citation
Irving Rondon-Ojeda, and Francisco Soto-Eguibar, "Electromagnetic Field Theory for Invariant Beams Using Scalar Potentials," Progress In Electromagnetics Research B, Vol. 66, 49-61, 2016.
doi:10.2528/PIERB15123102
References

1. Durnin, J., "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A, Vol. 4, No. 4, 651-654, 1987.
doi:10.1364/JOSAA.4.000651

2. Gutierrez-Vega, J. C., M. D. Iturbe-Castillo, and S. Chavez-Cerda, "Alternative formulation for invariant optical fields: Mathieu beams," Opt. Letters, Vol. 25, No. 20, 1493-1495, 2000.
doi:10.1364/OL.25.001493

3. Bandres, M. A., J. C. Gutierrez-Vega, and S. Chavez-Cerda, "Parabolic nondiffracting optical wave fields," Opt. Letters, Vol. 29, No. 1, 44-46, 2004.
doi:10.1364/OL.29.000044

4. Jauregui, R. and S. Hacyan, "Quantum-mechanical properties of Bessel beams," Phys. Rev. A, Vol. 71, No. 033411, 2005.

5. Rodriguez-Lara, B. M. and R. Jauregui, "Dynamical constants for electromagnetic fields with elliptic-cylindrical symmetry," Phys. Rev. A, Vol. 78, No. 033813, 2008.

6. Rodriguez-Lara, B. M. and R. Jauregui, "Dynamical constants of structured photons with parabolic-cylindrical symmetry," Phys. Rev. A, Vol. 79, No. 055806, 2009.

7. Rodriguez-Lara, B. M. and R. Jauregui, "Single structured light beam as an atomic cloud splitter," Phys. Rev. A, Vol. 80, No. 011813R, 2009.

8. Zhang, L. and P. L. Marston, "Optical theorem for acoustic non-diffracting beams and application to radiation force and torque," Biomed. Opt. Express, Vol. 4, No. 9, 1610-1617, 2013.
doi:10.1364/BOE.4.001610

9. Wulle, T. and S. Herminghaus, "Nonlinear optics of Bessel beams," Phys. Rev. Lett., Vol. 71, No. 209, 1401-1404, 1993.
doi:10.1103/PhysRevLett.70.1401

10. Ambrosio, L. A. and H. E. Hernandez-Figueroa, "Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces," Biomed. Opt. Express, Vol. 2, No. 7, 1893-1906, 2011.
doi:10.1364/BOE.2.001893

11. Blonskyi, I., V. Kadan, I. Dmitruk, and P. Korenyuk, "Cherenkov phase-matching in Raman-seeded four-wave mixing by a femtosecond Bessel beam," Appl. Phys. B, Vol. 107, 649-652, 2012.
doi:10.1007/s00340-012-5031-8

12. Willner, A. E., et al., "Optical communications using orbital angular momentum beams," Adv. Opt. Photon., Vol. 7, No. 1, 66-106, 2015.
doi:10.1364/AOP.7.000066

13. Volke-Sepulveda, K., S. Garces-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, "Orbital angular momentum of a high-order Bessel light beam," J. Opt. B: Quantum Semiclass. Opt., Vol. 4, S82-S89, 2002.
doi:10.1088/1464-4266/4/2/373

14. Volke-Sepulveda, K. and E. Ley-Koo, "General construction and connections of vector propagation invariant optical ¯elds: TE and TM modes and polarization states," J. Opt. A: Pure Appl. Opt., Vol. 8, No. 10, 867-877, 2006.
doi:10.1088/1464-4258/8/10/008

15. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

16. Jackson, J. D., Classic Electrodynamics, 3rd Ed., Wiley, 1999.

17. Gri±ths, D. J., Introduction to Electrodynamics, 3rd Ed., Prentice Hall, 1999.

18. Boyer, C. P., E. G. Kalnins, W. Miller, and Jr., "Symmetry and separation of variables for the Helmholtz and Laplace equations," Nagoya Math. J., Vol. 60, 35-80, 1976.
doi:10.1017/S0027763000017165

19. Bouchal, Z., "Nondiffracting optical beams: Physical properties, experiments, and applications," Czechoslovak Journal of Physics, Vol. 53, 537-578, 2003.
doi:10.1023/A:1024802801048

20. Gutierrez-Vega, J. C., R. Rodriguez-Dagnino, M. Meneses-Nava, and S. Chavez-Cerda, "Mathieu functions, a visual approach," Am. J. Phys., Vol. 71, No. 3, 233-242, 2003.
doi:10.1119/1.1522698

21. Lopez-Mariscal, C., M. A. Bandres, J. C. Gutirrez-Vega, and S. Chavez-Cerda, "Observation of parabolic nondiffracting optical fields," J. Opt. Soc. Am., Vol. 13, No. 7, 2364-2369, 2005.

22. Hernandez-Figueroa, H. E., M. Zamboni-Rached, and E. Recami, Non-di®racting Waves, John Wiley & Sons, 2013.
doi:10.1002/9783527671519

23. McGloin, D. and D. K. Dholakia, "Bessel beams: Diffraction in a new light," Contemporary Physics, Vol. 46, No. 1, 15-28, 2005.
doi:10.1080/0010751042000275259

24. Flores-Perez, A., J. Hernandez, R. Jauregui, and K. Volke-Sepulveda, "Experimental generation and analysis of first-order TE and TM Bessel modes in free space," Opt. Letters, Vol. 31, No. 11, 1732-1734, 2006.
doi:10.1364/OL.31.001732

25. Mishra, S., "A vector wave analysis of a Bessel beam," Opt. Comm., Vol. 85, 159-161, 1991.
doi:10.1016/0030-4018(91)90386-R

26. Bouchal, Z. and Z. M. Olivik, "Non-diffractive vector Bessel beams," J. Modern Opt., Vol. 42, 1555-1566, 1995.
doi:10.1080/09500349514551361

27. Yu, Y.-Z. and W.-B. Dou, "Vector analyses of nondifracting beams," Progress In Electromagnetics Research Letters, Vol. 5, 57-71, 2008.
doi:10.2528/PIERL08110906

28. Novitsky, A. V. and D. V. Novitsky, "Negative propagation of vector Bessel beams," Opt. Soc. Am. A, Vol. 24, 2844-2849, 2007.
doi:10.1364/JOSAA.24.002844

29. Lin, Y., W. Seka, J. Eberly, H. Huang, and D. Brown, "Experimental investigation of Bessel beam characteristics," Applied Opt., Vol. 11, No. 15, 2708-2713, 1992.
doi:10.1364/AO.31.002708

30. Bajer, J. and R. Horak, "Nondiffractive fields," Phys. Rev. E, Vol. 54, No. 3, 3052-3054, 1996.
doi:10.1103/PhysRevE.54.3052

31. Litvin, I. A., "The behavior of the instantaneous Poynting vector of symmetrical laser beams," J. Opt. Soc. Am., Vol. 29, No. 6, 901-907, 2012.
doi:10.1364/JOSAA.29.000901

32. Mokhun, I., A. Arkhelyuk, Y. Galushko, Y. Kharitonovtta, and J. Viktorovskaya, "Experimental analysis of the Poyting vector characteristics," Applied Opt., Vol. 51, No. 10, C158-C162, 2012.
doi:10.1364/AO.51.00C158

33. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian lases modes," Phys. Rev. A, Vol. 45, No. 11, 8185-8189, 1992.
doi:10.1103/PhysRevA.45.8185

34. Barnett, S. M. and L. Allen, "Orbital angular momentum and nonparaxial light beams," Opt. Comm., Vol. 110, 670-678, 1994.
doi:10.1016/0030-4018(94)90269-0

35. Barnett, S. M., "Optical angular momentum flux," J. Opt. B: Quantum and Semiclass. Optics, Vol. 4, S7-S16, 2002.
doi:10.1088/1464-4266/4/2/361

36. Mitri, F. G., "Counterpropagating nondifracting vortex beams with linear and angular momenta," Phys. Rev. A, Vol. 88, 035804, 2013.

37. Barton, J. P., D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys., Vol. 66, 4594-4602, 1989.
doi:10.1063/1.343813

38. Marston, P. L., "Scattering of a Bessel beam by sphere," J. Acoust. Soc. Am., Vol. 121, No. 2, 753-758, 2007.
doi:10.1121/1.2404931

39. Marston, P. L., "Scattering of a Bessel beam by sphere II: Helicoidal case shell example," J. Acoust. Soc. Am., Vol. 124, No. 5, 2905-2910, 2008.
doi:10.1121/1.2973230

40. Belafhal, A., A. Chafiq, and Z. Hricha, "Scattering of Mathieu beams by a rigid sphere," Opt. Comm., Vol. 284, 3030-3035, 2011.
doi:10.1016/j.optcom.2011.02.021

41. Belafhal, A., L. Ez-Zariy, A. Chafiq, and Z. Hricha, "Analysis of the scattering far field of a nondiffracting parabolic beam by a rigid sphere," Phys. and Chem. News, Vol. 60, 15-21, 2011.

42. Cui, Z., Y. Han, and L. Han, "Scattering of a zero-order Bessel beam by shaped homogeneous dielectric particles," J. Opt. Soc. Am. A, Vol. 30, No. 10, 1913-1920, 2013.
doi:10.1364/JOSAA.30.001913

43. Brandao, P., "Nonparaxial TE and TM vector beams with well-defined orbital angular momentum," Opt. Letters, Vol. 37, No. 5, 909-911, 2012.
doi:10.1364/OL.37.000909