Vol. 63
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-03-20
A New Property of Maximally-Flat Lowpass Filter Prototype Coefficients with Application in Dissipative Loss Calculations
By
Progress In Electromagnetics Research C, Vol. 63, 1-11, 2016
Abstract
This paper presents a new property of maximally-at filter prototype coefficients. The property can be used to relate the summation of all the coefficients to an elegant expression which only includes the first coefficient. This property is then used to calculate the increase in insertion loss of this type of filters in the presence of dissipative losses due to elements/resonators finite quality factors. This presented equation for the excess loss is very convenient and does not require referring to the prototype element value table. The property is also used to show that the group delay of a maximally-at lowpass filter at ω = 0 rad/sec is only a function of the first element value of the prototype filter. Finally, a commercial circuit simulation tool is used to generate examples to verify the accuracy of the presented analytical equations. Additionally, the results are compared to expressions found in classical literature.
Citation
Shahrokh Saeedi Juseop Lee Hjalti H. Sigmarsson , "A New Property of Maximally-Flat Lowpass Filter Prototype Coefficients with Application in Dissipative Loss Calculations," Progress In Electromagnetics Research C, Vol. 63, 1-11, 2016.
doi:10.2528/PIERC16011304
http://www.jpier.org/PIERC/pier.php?paper=16011304
References

1. Cohn, S. B., "Dissipation loss in multiple-coupled-resonator filters," Proc. of the IRE, Vol. 47, No. 8, 1342-1348, 1957.
doi:10.1109/JRPROC.1959.287201

2. Tsai, C.-M. and H.-M. Lee, "The effect of component Q distribution on microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1545-1553, 2006.
doi:10.1109/TMTT.2006.871929

3. Dishal, M., "Design of dissipative band-pass filters producing desired exact amplitude-frequency characteristics," Proc. of the IRE, Vol. 37, No. 9, 1050-1069, 1949.
doi:10.1109/JRPROC.1949.230947

4. Bode, H. W., Network Analysis and Feedback Amplifier Design, Van Nostrand, New York, NY, 1945.

5. Matthaei, G. L., L. Young, and E. M. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, McGraw-Hill, New York, NY, 1964.

6. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, Wiley-Interscience, Hoboken, NJ, 2007.

7. Hunter, I. C., Theory and Design of Microwave Filters, IET Press, London, U.K., 2001.
doi:10.1049/PBEW048E

8. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, Burlington, MA, 2007.

9. Saeedi, S., J. Lee, and H. H. Sigmarsson, "Novel coupling matrix synthesis for single-layer substrate-integrated evanescent-mode cavity tunable bandstop filter design," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 12, 3929-3938, Dec. 2015.
doi:10.1109/TMTT.2015.2490075