1. Willner, A. E., H. Huang, Y. Yan, et al. "Optical communications using orbital angular momentum beams," Advances in Optics and Photonics, Vol. 7, No. 1, 66-106, 2015. Google Scholar
2. Wang, J., S. Li, C. Li, et al. "Ultra-high 230-bit/s/Hz spectral efficiency using OFDM/OQAM 64-QAM signals over pol-muxed 22 orbital angular momentum (OAM) modes," Optical Fiber Communication Conference, Optical Society of America, W1H, 4, San Francisco, USA, 2014. Google Scholar
3. Parkvall, S., A. Furusk¨ar, and E. Dahlman, "Evolution of LTE toward IMT-advanced," IEEE Communications Magazine, Vol. 49, No. 2, 84-91, 2011. Google Scholar
4. Bozinovic, N., Y. Yue, Y. Ren, et al. "Terabit-scale orbital angular momentum mode division multiplexing in fibers ," Science, Vol. 340, No. 6140, 1545-1548, 2013. Google Scholar
5. Wang, J., J. Y. Yang, I. M. Fazal, et al. "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photonics, Vol. 6, No. 7, 488-496, 2012. Google Scholar
6. Yao, A. M. and M. J. Padgett, "Orbital angular momentum: origins, behavior and applications," Advances in Optics and Photonics, Vol. 3, No. 2, 161-204, 2011. Google Scholar
7. Sueda, K., G. Miyaji, N. Miyanaga, et al. "Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses," Optics Express, Vol. 12, No. 15, 3548-3553, 2004. Google Scholar
8. Karimi, E., S. A. Schulz, I. De Leon, et al. "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light: Science & Applications, Vol. 3, No. 5, e167, 2014. Google Scholar
9. Slussarenko, S., A. Murauski, T. Du, et al. "Tunable liquid crystal q-plates with arbitrary topological charge," Optics Express, Vol. 19, No. 5, 4085-4090, 2011. Google Scholar
10. Heckenberg, N. R., R. McDuff, C. P. Smith, et al. "Generation of optical phase singularities by computer-generated holograms," Optics Letters, Vol. 17, No. 3, 221-223, 1992. Google Scholar
11. Cai, X., J. Wang, M. J. Strain, et al. "Integrated compact optical vortex beam emitters," Science, Vol. 338, No. 6105, 363-366, 2012. Google Scholar
12. Lei, T., M. Zhang, Y. Li, et al. "Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings," Light: Science & Applications, Vol. 4, No. 3, e257, 2015. Google Scholar
13. Shu, W., D. Song, Z. Tang, et al. "Generation of optical beams with desirable orbital angular momenta by transformation media," Physical Review A, Vol. 85, No. 6, 063840, 2012. Google Scholar
14. Chen, W., D. C. Abeysinghe, R. L. Nelson, et al. "Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer," Nano Letters, Vol. 10, No. 6, 2075-2079, 2010. Google Scholar
15. Dall, R., M. D. Fraser, A. S. Desyatnikov, et al. "Creation of orbital angular momentum states with chiral polaritonic lenses," Physical Review Letters, Vol. 113, No. 20, 200404, 2014. Google Scholar
16. Yu, H., H. Zhang, Y. Wang, et al. "Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light," Scientific Reports, Vol. 3, 2013. Google Scholar
17. Thide, B., H. Then, J. Sjoholm, et al. "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, 2007. Google Scholar
18. Mohammadi, S. M., L. K. S. Daldorff, J. E. S. Bergman, et al. "Orbital angular momentum in radio — a system study," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 565-572, 2010. Google Scholar
19. Sjoholm, J. and K. Palmer, "Angular momentum of electromagnetic radiation,", UPTEC F07 56, 2007. Google Scholar
20. Mao, F., M. Huang, J. Zhang, et al. "Graphene assisted radiation adjustable OAM generator," Progress In Electromagnetics Research M, Vol. 42, 31-38, 2015. Google Scholar
21. Tamburini, F., E. Mari, A. Sponselli, et al. "Encoding many channels on the same frequency through radio vorticity: first experimental test," New Journal of Physics, Vol. 14, No. 3, 03300, 2012. Google Scholar
22. Mao, F., M. Huang, and J. J. Yang, Patent Application Number in China, 201410230978.7, 2014.
23. Zheng, S., X. Hui, X. Jin, et al. "Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1530-1536, 2015. Google Scholar
24. Hui, X., S. Zheng, Y. Chen, et al. "Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas," Scientific Reports, Vol. 5, 2015. Google Scholar
25. Barbuto, M., F. Trotta, F. Bilotti, et al. "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014. Google Scholar
26. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, 1980.
27. Derneryd, A. G., "Analysis of the microstrip disk antenna element," IEEE Transactions on Antennas & Propagation, Vol. 27, No. 5, 660-664, 1977. Google Scholar