1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
doi:10.1126/science.1096796 Google Scholar
3. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater., Vol. 6, No. 12, 946-950, 2007.
doi:10.1038/nmat2033 Google Scholar
4. Zhang, B., "Electrodynamics of transformation-based invisibility cloaking," Light: Sci. Appl., Vol. 1, No. 10, e32, 2012.
doi:10.1038/lsa.2012.32 Google Scholar
5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
6. He, X. J., L. Wang, J. M. Wang, X. H. Tian, J. X. Jiang, and Z. X. Geng, "Electromagnetically induced transparency inplanar complementary metamaterial for refractive index sensing applications," J. Phys. D: Appl. Phys., Vol. 46, No. 36, 510-516, 2013.
doi:10.1088/0022-3727/46/36/365302 Google Scholar
7. Wu, C., A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, "Fano-resonant asymmetric metamaterials for ultra sensitive spectroscopy and identification of molecular monolayers," Nat. Mater., Vol. 11, No. 1, 69-75, 2012.
doi:10.1038/nmat3161 Google Scholar
8. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501 Google Scholar
9. Cheng, Y. Z., W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, "Ultra broadband reflective polarization convertor for terahertz waves," Appl. Phys. Lett., Vol. 105, No. 18, 181111–4, 2014.
doi:10.1063/1.4901272 Google Scholar
10. Dincer, A. F., M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, "Chiral metamaterial structures with strong optical activity and their applications," Optical Engineering, Vol. 53, No. 10, 107101-107108, 2014.
doi:10.1117/1.OE.53.10.107101 Google Scholar
11. Zhang, L., P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, "Adjustable wideband reflective converter based on cut-wire metasurface," J. Opt., Vol. 17, No. 10, 105105, 2015.
doi:10.1088/2040-8978/17/10/105105 Google Scholar
12. Xie, L., H.-L. Yang, X. Huang, and Z. Li, "Multi-band circular polarization using archimedean spiral structure chiral metamaterial with zero and negative refractive index," Progress In Electromagnetics Research, Vol. 141, 645-657, 2013.
doi:10.2528/PIER13063003 Google Scholar
13. Yang, Y., W. Wang, P. Moitra, I. Kravchenko, D. P. Briggs, and J. Valentine, "Dielectric metareflect array for broadband linear polarization conversion and optical vortex generation," Nano. Lett., Vol. 14, No. 3, 1394-1399, 2014.
doi:10.1021/nl4044482 Google Scholar
14. Chen, H. T., W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nat. Photon., Vol. 3, No. 3, 148-151, 2009.
doi:10.1038/nphoton.2009.3 Google Scholar
15. Hsieh, C. F., R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate," Opt. Lett., Vol. 31, No. 8, 1112-1114, 2006.
doi:10.1364/OL.31.001112 Google Scholar
16. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, No. 17, 177401, 2006.
doi:10.1103/PhysRevLett.97.177401 Google Scholar
17. Ye, Y., X. Li, F. Zhuang, and S. W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, No. 3, 031111-3, 2011.
doi:10.1063/1.3615054 Google Scholar
18. Cao, Y., Y. Xie, Z. Geng, J. Liu, Q. Kan, and H. Chen, "Polarization-sensitive coupling and transmission dip shift in asymmetric metamaterials," J. Phys. Chem. C, Vol. 119, No. 11, 6204-6210, 2015.
doi:10.1021/jp512296t Google Scholar
19. Jiang, S. C., X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, "Controlling the polarization state of light with a dispersion-free metastructure," Phys. Rev. X, Vol. 4, No. 2, 021026, 2014. Google Scholar
20. Li, Z., S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, "Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial," Appl. Phys. Lett., Vol. 105, No. 20, 201103-5, 2014. Google Scholar
21. Song, K., Y. Liu, C. Luo, and X. Zhao, "High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, No. 50, 505104, 2014.
doi:10.1088/0022-3727/47/50/505104 Google Scholar
22. Tamayama, Y., K. Yasui, T. Nakanishi, and M. Kitano, "A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial," Appl. Phys. Lett., Vol. 105, No. 2, 021110-4, 2014.
doi:10.1063/1.4890623 Google Scholar
23. Wu, J., B. Ng, H. Liang, M. Breese, M. Hong, S. A. Maier, H. O. Moser, and O. Hess, "Chiral metafoils for terahertz broadband high-contrast flexible circular polarizers," Phys. Rev. Appl., Vol. 2, No. 1, 014005, 2014.
doi:10.1103/PhysRevApplied.2.014005 Google Scholar
24. Liu, D. Y., M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, "Enhanced asymmetric transmission due to Fabry-Perot-Like cavity," Opt. Express, Vol. 22, No. 10, 11707-11712, 2014.
doi:10.1364/OE.22.011707 Google Scholar
25. Mutlu, M. and E. Ozbay, "A transparent 90◦ polarization rotator by combining chirality and electromagnetic wave tunneling," Appl. Phys. Lett., Vol. 100, No. 5, 051909-4, 2012.
doi:10.1063/1.3682591 Google Scholar
26. Tremain, B., H. J. Rance, A. P. Hibbins, and J. R. Sambles, "Polarization conversion from a thin cavity array in the microwave regime," Sci. Rep., Vol. 5, No. 9366, 2015. Google Scholar
27. Huang, S., J. Li, A. Zhang, J. Wang, and Z. Xu, "Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity," Opt. Express, Vol. 22, No. 17, 20973-20981, 2014.
doi:10.1364/OE.22.020973 Google Scholar
28. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces," Opt. Mater. Express, Vol. 4, No. 8, 1717-1724, 2014.
doi:10.1364/OME.4.001717 Google Scholar
29. Ding, F., Z. Wang, S. He, M. S. Vladimir, and V. K. Alexander, "Broadband high-efficiency half-wave plate a supercell-based plasmonic metasurface approach," ACS Nano., Vol. 9, No. 4, 4111-4119, 2015.
doi:10.1021/acsnano.5b00218 Google Scholar
30. Nanfang, Y., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-347, 2011.
doi:10.1126/science.1210713 Google Scholar