Vol. 60
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-05-26
Broadband Transition from Microstrip Line to Waveguide Using a Radial Probe and Extended GND Planes for Millimeter-Wave Applications
By
Progress In Electromagnetics Research Letters, Vol. 60, 95-100, 2016
Abstract
A broadband microstrip line-to-waveguide (MSL-to-WG) transition is developed for E-band applications. In order to achieve a sufficient and broadband coupling between the microstrip line (MSL) and waveguide (WG), a radial electric probe at the end of the MSL and extended ground (GND) planes on the dielectric substrate are proposed. Results are compared against a simple transition (S-Tr) with a straight electric probe. For the case of operational bandwidth (BW) for an input return loss (S11) below -20 dB, the proposed transitions using the radial probe and extended GND planes show the BW enhancement of 33.8% and 61.9%, respectively, compared to the S-Tr. The proposed and simple transitions were fabricated on a low-loss liquid crystal polymer (LCP) dielectric substrate. The measured bandwidth (BW) for S11 below -10 dB of the proposed transition is over 28 GHz, which is satisfied at all test frequencies from 67 to 95 GHz. Its measured insertion loss can be analyzed as -1.33 and -1.41 dB per transition at 70 and 80 GHz, respectively, considering the loss contribution of the cable adapter and waveguide transition.
Citation
Azzemi Ariffin, Dino Isa, and Amin Malekmohammadi, "Broadband Transition from Microstrip Line to Waveguide Using a Radial Probe and Extended GND Planes for Millimeter-Wave Applications," Progress In Electromagnetics Research Letters, Vol. 60, 95-100, 2016.
doi:10.2528/PIERL16040801
References

1. Asif, S. Z., "E-band microwave radios for mobile backhaul," I. J. Wireless and Microwave Technologies, Vol. 4, 37-46, 2015.
doi:10.5815/ijwmt.2015.04.04

2. Gresham, I., N. Jain, T. Budka, A. Alexanian, N. Kinayman, B. Ziegner, S. Brown, and P. Staecker, "A compact manufacturable 76-77-GHz radar module for commercial ACC applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, 44-58, 2001.
doi:10.1109/22.899961

3. Mehrpouyan, H., M. Khanzadi, M. Matthaiou, A. Sayeed, R. Schober, and Y. Hua, "Improving bandwidth efficiency in e-band communication systems," IEEE Communications Magazine, Vol. 52, 121-128, 2014.
doi:10.1109/MCOM.2014.6766096

4. Aliakbarian, H., A. Enayati, G. A. E. Vandenbosch, and W. De Raedt, "Novel low-cost end-wall microstrip-to-waveguide splitter transition," Progress In Electromagnetics Research, Vol. 101, 75-96, 2010.
doi:10.2528/PIER09081805

5. Dong, J., T. Yang, Y. Liu, Z. Yang, and Y. Zhou, "Broadband rectangular waveguide to GCPW transition," Progress In Electromagnetics Research Letters, Vol. 46, 107-112, 2014.
doi:10.2528/PIERL14050907

6. Shih, Y.-C., T.-N. Ton, and L. Q. Bui, "Waveguide-to-microstrip transitions for millimeter-wave applications," IEEE MTT-S International Microwave Symposium Digest, 473-475, 1988.

7. Yano, H. Y., A. Abdelmonem, J. F. Liang, and K. A. Zaki, "Analysis and design of microstrip to waveguide transition," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 2371-2379, 1994.
doi:10.1109/22.339769

8. Kaneda, N., Y. Qian, and T. Itoh, "A broad-band microstrip-to-waveguide transition using quasi-Yagi antenna," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2562-2567, 1999.
doi:10.1109/22.809007

9. Sakakibara, K., M. Hirono, N., Kikuma, and H. Hirayama, "Broadband and planar microstrip-to-waveguide transitions in millimeter-wave band," International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 3, 1278-1281, 2008.

10. Lee, Y. C. and C. S. Park, "A compact broadband PHEMT MMIC power amplifier for K through Ka-band applications," Int. J. Electron. Commun. (AEU), Vol. 57, 1-4, 2003.

11. Marcuvitz, N., Waveguide Handbook, Chapter 5, IEE Press, London, U.K., 1993.